Thesis
 Final Report

Nemours Children's Hospital as a part of The Nemours Foundation

Caitlin Behm

Structural Option
Advisor: Dr. Boothby
04.02.12

Nemours Children's Hospital
As a part of The Nemours Foundation

Orlando, Florida

General Information

Building Type: Hospital
Building Size: 600,000 SF
Height: 135 ft
Construction: July 2009-July2012
Cost: $\$ 400$ million
Delivery: Design-Bid-Build

Architecture

- 85-bed tower and outpatient center
- Glass curtain walls dominate the majority of the façade.
- Other materials include metal and terracotta panels.
- Main features of the building: curved curtain wall, deep canopies, and green roofs

Structure

- Concrete spread footings placed on improved soils
- Framing system consists of concrete columns and beams
- 12-14" elevated two-way flat slab with drop panels
- Lateral system comprises of shear walls located in elevator core and stairways

MEP

Nemours Children's Hospital as a part of The Nemours Foundation gains power from the Central Energy Plant (CEP) attached to the hospital. The CEP contains the main electrical and mechanical distribution systems, except for the AHUs.

CEP

- Three 1300 ton dual cell cooling towers
- Three 1300 ton centrifugal chillers
- Three water tube boilers
- Main and 15 kV chiller source transfer switching
- Four 2250 kW generators

Hospital

- Thirty-two AHUs located on the 1st floor mezzanine or 7th floor mechanical room.
- Mix use of VAV and CV boxes

Project Team

Owner: The Nemours Foundation
CM/GC: Skanska USA Building
Architects: Stanley Beaman \& Sears
Perkins + Will
Engineers: (Civil) Harris Civil Engineers
(Structural) Simpson, Gumpertz \& Heger
(Landscape Architect) AECOM
(MEP\&T) TLC Engineering for Architecture

Table of Contents

ACKNOWLEDGEMENTS 5
EXECUTIVE SUMMARY 6
BUILDING INTRODUCTION 7
STRUCTURAL OVERVIEW 9
Foundation 9
Floor System 10
Framing System 12
Lateral System 12
Roof System 13
THESIS OBJECTIVES 14
Structural Analysis and Design 14
Problem Statement. 14
Problem Solution 15
Design Goals 15
Breadth Studies. 16
MAE Requirements 16
STRUCTURAL ANALYSIS AND DESIGN 17
Introduction 17
Design Codes. 21
Material Properties 22
Lateral Design 23
Portal Method 23
Moment Transfer 24
Shear Solutions 25
Structure Point Models 26
SAP Models. 27
ETABS Models 29
Torsion 30
Foundation Check 30
Conclusion. 31
DAYLIGHTING ANALYSIS 32
BUILDING ENVELOPE STUDY. 35
Comparison of Sealants and Mullions 35
NCHTNF Current Façade. 37
GRADUATE COURSE INTEGRATION 37
FINAL SUMMARY 38
REFERENCES. 39
APPENDIX A: 110 MPH WIND LOAD CALCULATION 42
APPENDIX B: PORTAL METHOD ANALYSIS 44
APPENDIX C: MOMENT TRANSFER ANALYSIS 53
APPENDIX D: COMBINED SHEAR \& MOMENT TRANSFER 61
APPENDIX E: COLUMN INTERACTION DIAGRAMS 66
APPENDIX F: SLAB CAPACITY CHECK 67
APPENDIX G: STUD RAIL CHECK 70
APPENDIX H: EDGE BEAM DESIGN 71
APPENDIX I: FOUNDATION CHECK 77
APPENDIX J: DAYLIGHTING SPREADSHEET 78
APPENDIX K: ALUMINUM MULLION DESIGN 82

Acknowledgements:

I would like to thank The Nemours Foundation for allowing me to use The Nemours Children's Hospital as a part of The Nemours Foundation in Orlando, Florida for my senior thesis study.

Additionally, I would like to thank Simpson Gumpertz \& Heger, especially Michael Bolduc and Cynthia Staats, for providing me with all the documents and reports needed to complete this project along with their invaluable advice and direction.

I would also like to thank the following professors at The Pennsylvania State University Architectural Engineering Department:

Dr. Thomas Boothby
Dr. Andres Lepage
Dr. Kevin Houser
Professor Parfitt
Professor Holland
The entire AE faculty and staff

A special thanks to my family and friends who have provided me with endless help and support these past five years.

Executive Summary:

Nemours Children's Hospital as a part of The Nemours Foundation (NCHTNF) is a 7-story building located in Orlando, Florida. The entire complex consists of a hospital, clinic, loading dock data center, central energy plant (CEP), and parking facility. The 600,000 square foot hospital consists of two components: a bed tower and outpatient center. The combined components will provide 85 beds, emergency department, diagnostics and ambulatory programs, educational and research centers, and an outpatient clinic. Stanley Beaman \& Sears and Perkins + Will are the architects of the project. Harris Civil Engineers, Simpson Gumpertz \& Heger, AECOM, and TLC Engineering for Architecture are responsible for the engineering design of NCHTNF. Skanska USA Building is acting as the construction manager and general contractor of the design-bid-build project, which is scheduled to be completed July 2012 after ground was broken July 2009.

This thesis focuses on redesigning the lateral system using concrete moment frames instead of the current concrete shear walls. The existing structure uses 157 mph design wind speed, far surpassing the minimum code level. This lateral analysis studies if concrete moment frames are feasible for 110 mph , the minimum design wind speed for Orlando, in addition to the 157 mph case. Pending a practical design, concrete moment frames create an open floor plan by eliminating shear walls. These changes alter the weight of the building, so the foundation needs to be reevaluated.

Additionally, a flat plate system is considered rather than the current flat slab. Flat plate designs eliminate drop panels and column capitals, thus producing a more cost effective slab system with a reduction of formwork. The slab-column connections require detailed analyses to determine if the connection can withstand the moment transfer and applied shear. If the slab-column connections cannot carry the load, solutions are presented and studied to mitigate the moment transfer.

In addition to the lateral and floor system redesign, two breadth topics are explored. One topic is a daylighting study of the sun management of a south facing façade. This determines if the current louvers can adequately control the sun. Additionally, an alternative interior sun control system is presented. The second breath topic examines the structural system of the façade, for both constructability and maintainability. An aluminum mullion design is presented as an alternate to the current silicone structural sealant; comparisons of advantages and disadvantages of each drive the final decision.

Building Introduction:

NCHTNF is a 7-story building located in Orlando, Florida, shown in Figure 1. The entire complex consists of a hospital, clinic, loading dock data center, central energy plant (CEP), and parking facility. The 600,000 square foot hospital consists of two components: a bed tower and outpatient center. The combined components will provide 85 beds, emergency department, diagnostics and ambulatory programs, educational and research centers, and an outpatient clinic. Stanly Beaman \& Sears and Perkins + Will are the architects of the project. Harris Civil Engineers, Simpson Gumpertz \& Heger, AECOM, and TLC Engineering for Architecture are responsible for the engineering design of NCHTNF. Skanska USA

Figure 1 - Location of NCHTNF. Courtesy The Nemours Foundation. Building is acting as the construction manager and general contractor of the design-bid-build project, which is scheduled to be completed July 2012 after ground was broken July 2009.

Figure 2 - Nemours Children's Hospital as a part of The Nemours Foundation. Courtesy The Nemours Foundation.

The design of this $\$ 400$ million building uses 2007 Florida Building Code with 2009 updates. The Florida Building Code is based on the International Building Code and subsidiary related codes. The building is classified as $\mathrm{I}-2$ while the clinic can be considered business class, the hospital is industrial because of overnight patients, thus making the entire project industrial. The site is an undeveloped parcel of land that underwent clearing and mass grading to reach its current topography. The site location does not have any restrictions presiding over the NCHTNF's design.

The primary structure is concrete with curtain walls dominating the majority of the façade. The glass curtain walls vary between metal sunscreen systems, fritt patterns, and insulated spandrels. Other building materials include ribbed metal panel system, terracotta tile wall system, terrazzo wall panels, and composite metal panels to complement the glass systems in the curtain walls. A curved curtain wall, deep canopies, and two green roof gardens provide additional architectural features to the building design.

NCHTNF is designed to withstand the effects of a category 3 hurricane using 157 mph design wind speed. The National Oceanic and Atmospheric Administration, NOAA, describes a category 3 hurricane as an event where devastating damage will occur, resulting in injury and death. The Nemours Foundation wants NCHTNF to be listed as a place of refuge, more technically known as an Enhanced Hurricane Protection Area, during a category 3 hurricane. This requires the building's design to at least meet NOAA's classification of a category 3 hurricane, having sustained winds of $110-130 \mathrm{mph}$. To qualify as an Enhanced Hurricane Protection Area, the hospital is designed to these standards with a factor of safety.

The building envelope's design is more complex than most to meet the Enhanced Hurricane Protection Area standards. The modular curtain wall, constructed by Trainor, is designed with 30,000 feet of dual sealant joints to allow weeping between the two joints. A probe test is specified to be conducted after the sealant has cured to ensure the joint is working properly. The north side of the building features a curved curtain wall supported by slanted structural columns. The deep canopies and fritt pattern glass, acting as sun shading devices to provide adequate shading

Figure 3 - Installation of Sun shading Device. Courtesy SGH. from the Florida sun, are prevalent throughout the building. An example of the one of the sun shading devices is shown in Figure 3. NCHTNF incorporates several different roofing systems to accommodate different functions of the roof. A fluid-applied membrane acts as the roofing system for the patient accessible roof gardens. Thermoplastic membrane roofing and SBS-modified bituminous membrane roofing comprise the other roofs on the building. A lab in Florida tested a mock-up of NCHTNF against conditions generated by a category 3 hurricane. A 2-story 10-bay mock-up is required to pass various tests to ensure the building envelope will be able to sustain the effects of a category 3 hurricane. Laminated glass and extensive use of roof fasteners help the building envelope meet the standards of the hurricane test.

The design of NCHTNF follows the USGBC's LEED prerequisites and credits needed for certification based on LEED for New Construction 2.2. The building has two green roof gardens on the second and fourth floor roofs as mentioned in the paragraph above. The green roofs double as outdoor gardens for patients as well as sustainability features for the building. NCHTNF has numerous sunshades to block the sun from the vast glass façades. Deep canopies provide shade for large spaces on the south façade of the building. The building's design implements Fritt pattern and insulated spandrel glass systems. These devices block some of the intense Florida sun to lessen the load on the HVAC system of the building.

Structural Overview:

NCHTNF bears on spread footings on either improved or natural soils, shown in Figure 4. The hospital and clinic portion of the building predominately consist of reinforced concrete, with the exception of steel framed mechanical penthouses. The loading dock data center and central energy plant are primarily steel framed structures. The lateral system is comprised of shear walls, most of which continue through the entire building height. NCHTNF uses unusual framing techniques for the wave and sloped curtain wall backup.

Figure 4 - Foundation Plan of NCHTNF. Courtesy SGH.

Foundation:

PSI, the geotechnical firm, performed nineteen borings across the site in January 2009. The soils generally consist of varying types of fine sands graded relatively clean to slightly silty in composition. The boring blow counts record the upper layers of sand to be of medium dense condition, while the lower layers of sand are generally loose to medium dense condition.

PSI recommends utilizing shallow foundations only if the foundation design implements soil improvement to increase the allowable bearing capacity used in the design. PSI proposes another foundation solution, if soil improvement is not desirable implement a pile foundation system. These reinforced augercast piles withstand considerably higher foundation loads than the shallow foundation system. The downside of augercast piles are they can bulge or neck where very loose soils are encountered, requiring stringent monitoring and quality control. Due to the specialized nature of the augercast piles for this project, spread footings with soil improvement is chosen as the foundation system for the NCHTNF.

Additionally, the water table is measured only 4 feet below the surface raises concerns about excavations. The sump system dewaters shallow excavations while deeper excavations require well-pointing or horizontal sock drains for proper dewatering.

Floor System:

NCHTNF has numerous types of floor construction due to different design requirements in different sections of the building. The building contains $5^{\prime \prime}-6$ " normal weight concrete as the slab on grade. A few sections of the foundation system utilize mat foundations, varying from 2' to $4^{\prime}-3^{\prime \prime}$ normal weight concrete. The hospital and clinic are built with normal weight elevated two-way flat slabs, with and without drop panels, varying in depth from 9"-14". A typical structural floor plan detailing a typical $30^{\prime} \times 30^{\prime}$ bay is shown in Figures 5 and 6. The loading dock data center and central energy plant are constructed with a 4-1/2" 1-way slab on $3^{\prime \prime}-20$ GA. composite metal deck, which is supported by a steel frame system. Some specialty areas, such as the green roof and the slab over the lecture hall, vary slightly from the typical slab in the remainder of the building.

There are 29 different concrete beam sizes in the NCHTNF. The beams range from $16^{\prime \prime} \times 20^{\prime \prime}$ to $89^{\prime \prime} \times 48^{\prime \prime}$. The hospital and clinic predominately consist of $15^{\prime} \times 30^{\prime}$ bays with a few $15^{\prime} \times 15^{\prime}$ and $30^{\prime} \times 30^{\prime}$ bays to accommodate for the elevator and stair core. The bays in the loading dock data center are irregular. They vary from the smallest being $21^{\prime} \times 30^{\prime}-3^{\prime \prime}$ to the largest being 30^{\prime} $x 45^{\prime}-2^{\prime \prime}$. The central energy plant also has a variety of bay sizes, ranging from $22^{\prime} \times 11^{\prime}-2^{\prime \prime}$ to $22^{\prime} \times 26^{\prime}-7$ ".

Figure 5 - Level 1 Typical Structural Bay ($3 \times$ x30') Key Plan. Courtesy SGH.

Figure 6 - Level 1 Typical Structural Bay ($30^{\prime} \times 30^{\prime}$). Courtesy SGH.

Framing System:

The columns supporting the NCHTNF are mostly reinforced concrete columns. Steel columns support the mechanical penthouse on the $7^{\text {th }}$ floor. The concrete columns supporting the hospital and clinic typically start at a dimension of $30^{\prime \prime} \times 30^{\prime \prime}$ and taper to $22^{\prime \prime} \times 22^{\prime \prime}$ by Level 6 . The mechanical penthouse is constructed with $\mathrm{W} 12 \times 53$ columns on both the hospital and clinic. W14x109, W10x49, W10x60, and W14x68 mainly support the loading dock data center. HSS8x8 and HSS12x8 dominate the central energy plant's supporting structure along with a few W12x65 and W12x79 columns.

Lateral System:

Shear walls resist lateral loads in the hospital and clinic of the NCHTNF. These walls are 12-14" thick and tie into mat foundations with dowels matching the typical wall reinforcement, mostly \#8 bars. The shear walls are located in the elevator/stair core in the hospital and in the elevator bays and lecture hall in the clinic, which are highlighted below in green in Figure 7. Also, the central energy plant has one shear wall, the rest of the lateral system of the CEP being braced framing which, discussed in the next paragraph. A few shear walls include knockout panels to plan for future openings.

Figure $\mathbf{7}$ - Level 1 Structural Floor Plan Highlighting the Lateral System. Courtesy SGH.

Steel concentrically braced frames resist lateral loads in the loading dock data center and central energy plant, highlighted above in orange in Figure 7. Diagonal members, HSS6x6 and HSS5x5, brace into W14, W16, and W21 beams in the loading dock data center. Diagonal members, HSS8x8 and HSS8x8, brace into W18 and W21 beams respectively in the central energy plant. As mentioned above, the central energy plant has one shear wall along with the steel concentrically braced frame system. The loading dock data center and CEP will not be analyzed in this report.

The load path in NCHTNF starts with the wind load against the façade of the building. Once the load is applied to the façade it is transferred to the diaphragms on each floor. The diaphragms then transfer the load to the lateral elements, being reinforced concrete shear walls in the hospital and clinic and steel concentrically braced frames in the loading dock data center and CEP. These lateral elements transfer the load to the foundation system, the final step of the load path of NCHTNF.

Roof System:

NCHTNF has several different roofing systems to accommodate different functions of the roof. A fluid-applied membrane acts as the roofing system for the roof garden that is accessible to patients and also doubles as a green roof. The fluid-applied membrane utilizes type IV extruded polystyrene board insulation. The other roofs on the building are constructed with thermoplastic membrane roofing and SBS-modified bituminous membrane roofing. Each of these roofs use polyisocyanurate board insulation, which is type II glass fiber mat facer. The other roofing system is $1-1 / 2^{\prime \prime}-18 \mathrm{GA}$. metal roof deck, located on the loading deck data center, central energy plant, and mechanical penthouses on the $7^{\text {th }}$ floor.

Figure 8 - Green Roof Rendering. Courtesy SGH.

Figure 9 - Green Roof Rendering. Courtesy SGH.

Thesis Objective:

Structural Analysis and Design:

Problem Statement:

A primary design principle of NCHTNF is remembering the structure is first and foremost a children's hospital. The importance of an open floor plan is paramount, seeing as the goal is to not make the patients feel confined in the hospital. NCHTNF current design uses 39 shear walls for the lateral force resisting system. The central core in the hospital, where the majority of shear walls are located, has limited floor space due to the placement of shear walls, highlighted in figures $11 \& 13$. Similarly, floor space is limited in a portion of the clinic due to shear walls shown in figures $10 \& 12$. Additionally, the shear walls require coordination with MEP systems to provide penetrations for ducts and conduit passing through the walls without losing structural integrity of the wall.

Figure 10-3D Hospital ETABS Model

Figure 12-3D Clinic ETABS Model

Figure 11 - First Floor Hospital ETABS Model

Figure 13 - First Floor Clinic ETABS Model

The design of typical hospitals strives to have large floor to ceiling heights. The more vertical space provided allows for a less complicated coordination in the ceiling plenum. NCHTNF currently uses a flat slab floor system. This allows the slab to be supported without beams or girders, which results in higher floor to ceiling heights. These higher clearances provide more space for MEP equipment, which eases the coordination process. On the contrary, drop panels require additional time to construct because the construction process requires more formwork than with a two-way flat plate system.

Problem Solution:

The lateral system of NCHTNF will be redesigned using concrete moment frames. This reduces the number of shear walls in the building, which creates a more open floor plan. A study to determine whether the moment frames can be integrated within the slab depth, which might require changing the slab thickness, will be performed. The floor system is analyzed as a flat plate system in efforts to keep the high floor to ceiling heights and remove the need for drop panels. Removing the drop panels from the floor design may reduce construction time and cost because the formwork for the drop panels will not be required.

In addition to analyzing the proposed lateral system redesign using the existing 157 mph design wind speed, the minimum required code wind speed of 110 mph is studied too. These analyses focus on the feasibility of implementing concrete moment frames as the lateral system. Also, using the 110 mph can be justified as an adequate design wind speed for an Enhanced Hurricane Protected Area based on historical max wind speed data.

The lateral and floor systems changes result in a reduction in the overall weight of the building. The foundation of the building needs to be analyzed to determine if either the bearing force or overturning moment have been exceeded with the change in weight. Gravity members require evaluation to determine if they need a redesign with the combination of lateral and gravity loads. Additionally, a model of the building needs to be constructed to check drift limitations and torsion with the adjusted lateral system.

Design Goals:

The overall design goal of this project is to design a lateral system producing a more flexible architectural layout. An additional underlying theme is reducing the current design wind load on the building, while still meeting the Enhanced Hurricane Protection Area standards mentioned in the introduction of this report. Other goals to be met throughout this project include:

- Do not decrease the amount of useable space per floor
- Eliminate the need for drop panels, which require supplementary formwork
- Analyze the feasibility of concrete moments by hand, Structure Point, SAP, and ETABS
- Evaluate non-structural systems affected by designing the building to withstand a hurricane, such as the façade louvers and structural sealant.

Breadth Studies:

The façade of the building is predominately glass, as per the owner's request. An analysis of the sun shading system, consisting of specifically calculated size louvers, studies the existing control of the sun's exposure into the building. The analysis centers on studying the year-round daylighting of the building in an effort to maximize the performance of the glass wall system. An alternative sun controlling device is presented regardless of the outcome of the analysis of the current system.

Figure 14 - NCHTNF East Façade. Courtesy SGH.

The other study examines the efficiency of the sealant of the current façade, a section view of the façade is shown in Figure 14. An alternate façade structural system is investigated to compare efficiency of each system. The focus on waterproofing the building, seeing as one of the design focuses is making the building hurricane proof, determines the final choice of design. The new system considers the effects of thermal, air, and moisture infiltration along with the life cycle cost of the wall system.

MAE Requirements:

The MAE requirement for this report is met by modeling NCHTNF in ETABS. Generating computer models in various structural analysis programs is the curriculum of AE 597A - Computer Modeling of Buildings. This class explains how to manipulate building models, within structural analysis computer programs, and study the given results. Additionally, the MAE requirement is met with incorporating course material from AE 542 - Building Enclosure Science and Design. This course studies design and analysis of building façades, which applies to NCHTNF.

Structural Analysis and Design:

Introduction:

Concrete Moment Frames:

Concrete moment frames with a flat plate slab are analyzed as an alternative to the current shear wall system in NCHTNF. Moment frames are feasible when the building is below 8-10 stories, which NCHTNF's 8 story height falls within the requirement ${ }^{1}$. The moment frames give the floor plan flexibility for layout and ease MEP coordination by eliminating cumbersome shear walls. Designing and modeling moment frames with the proposed slab-column connections is a subject that has not been completely developed. Much of this design process combines of a variety of ideas from different research papers and textbooks.

Gravity and lateral loads need to be simultaneously analyzed when designing a slab-column moment frame. Since, flat plate system designs primarily focus on solely resisting gravity loads, many researchers study if a flat plate can withstand combined lateral and gravity loads. The main issue is overestimating the lateral stiffness of the slab-column frame during the design process, which underestimates the lateral deflections ${ }^{2}$. β, the cracked stiffness modifier, is a point of disagreement between researchers because this modifier has been assigned a range of values. The modifier helps negate the overestimation of lateral stiffness, giving reason to why it has not received an exact value. Figure 15 shows the given range of β values. In regards to slab-column connections, many researchers have decided on their own specific value of β. For example, Wight and MacGregor suggest using $\beta=0.33$ for both interior and exterior connections as well as positive and negative sections. Other designers might disagree and suggest applying $\beta=0.5$ for positive bending regions and $\beta=0.33$ for negative bending regions. For this analysis, $\beta=0.33$ is used throughout, which is described in more detail in the modeling section ${ }^{3}$.

Figure 15 - Alpha and Beta Values for Slab-Column Connections. Courtesy Wight \& MacGregor

[^0]A slab-column connection experiences combined shear and moment transfer, so the capacity of the slab needs to be evaluated accordingly. The moment transfer is partially transferred by flexure with the remainder by shear; this is explained during the lateral system design section. The shear capacity must exceed that of the amount being transferred and if not, there are feasible solutions ${ }^{4}$. Examples being, the slab can be made deeper or expanding the cross section of a column increases the shear capacity of the slab-beam and decrease the shear and moment transfer. Also, stud rails, interior beams, and edge beams can be employed to mitigate the shear and moment transfer problem.

Equivalent Frame Method is commonly used for analysis of a flat plate structure subject to lateral loads. Of course finite element analysis is preferred, but this method gives a good base reference to compare a design to ${ }^{5}$. One drawback to equivalent frame method is the difficulty of applying it to buildings with openings in the slab. Slab openings are ignored in this analysis to simplify calculations. Additionally, some researchers believe the Effective Beam Width Method is more accurate than the Equivalent Frame Method when analyzing lateral loads on a flat plate system. According to research, Equivalent Frame Method may not produce accurate slab moments and lateral deflections while Equivalent Beam Width Method produces satisfactory results ${ }^{6}$.

[^1]
Hurricane Design:

As mentioned earlier in this report, NCHTNF is designed using 157 mph wind speed. This wind speed represents a category 3 hurricane, which has the possibility of creating catastrophic building failure, with a factor of safety. ASCE 7-05 requires NCHTNF to be built using a minimum of 110 mph design wind speed, so the chosen design wind speed far exceeds the code ${ }^{7}$. Appendix A shows the wind load calculations used for the 110 mph design speed. The orange star represents Orlando, which is within the green line, representing 110 mph design wind speed, shown in Figure 16. The reasoning of designing NCHTNF for 157 mph is The Nemours Foundation wants the building to be an area of refuge for the event of a hurricane crossing over Orlando. Besides the increased wind speed, no other considerations are taken into account to make NCHTNF an area of refuge.

Figure 16 - Design Wind Speeds. Courtesy ASCE 7-05.

[^2]Research has shown in a 56 year data gathering time period, 79 mph is the highest recorded wind speed in Orlando, reference Figure 17^{8}. Even though hurricanes make landfall in Florida, their winds dissipate once they reach inland Orlando. Seeing as the probability of experiencing 157 mph is extremely low, this thesis focuses using the 110 mph design wind speed instead of 157 mph . Additionally, calculations determine whether concrete moment frames can be designed using 157 mph design wind speed.

Florida	YRS	JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC		ANN	
		DR	SP																								
APALACHICOLA, FL	48	E	48	E	42	E	54	SE	51	SE	47	E	55	N	63	NE	59	E	67	NW	56	SE	47	SE	42	E	67
DAYTONA BEACH, FL	57	26	43	20	44	24	58	18	46	22	48	33	40	34	43	15	69	11	58	5	53	50	39	34	40	15	69
FORT MYERS, FL	54	25	40	25	39	35	46	20	39	32	44	31	48	18	45	14	50	5	92	35	62	30	32	33	35	5	92
JACKSONVILLE, FL	25	30	38	30	39	22	44	32	46	29	34	28	39	26	57	11	38	80	46	21	31	33	38	31	40	26	57
KEY WEST, FL	29	27	41	12	57	22	54	1	58	13	46	18	40	12	61	18	61	12	62	15	71	12	47	26	39	15	71
MIAMI, FL	48	24	46	19	55	4	46	24	35	32	52	13	37	25	43	12	86	6	69	15	69	7	38	32	38	12	86
ORLANDO, FL	56	25	42	25	46	24	46	2	50	35	51	32	64	14	46	12	79	60	61	5	48	26	46	20	35	12	79
PENSACOLA, FL	33	31	40	13	40	16	39	33	43	12	39	29	46	27	76	14	56	12	77	22	39	21	35	20	36	12	77
TALLAHASSEE, FL	46	23	46	9	40	27	48	19	35	29	40	3	44	22	39	2	58	8	46	20	32	16	40	28	37	2	58
TAMPA, FL	53	32	44	32	50	29	43	28	44	36	46	31	67	32	58	11	38	34	56	21	40	25	40	36	45	31	67
WEST PALM BEACH, FL	56	29	48	11	48	27	51	32	55	27	45	9	71	34	46	13	86	26	64	13	83	10	39	36	38	13	86

Figure 17 - Florida Max Wind Speeds. Courtesy SERCC.

[^3]Design Codes:
The standards and codes of this structural analysis and design are the same used with the original design of NCHTNF:

Design Codes	
Code	Description
Florida Building Code 2007*	With 2009 Updates
Florida Statutes 471 \&553	Main Hospital/Clinic, CEP, \& Loading Dock Data Center are all considered "Threshold Buildings"*
ASCE/SEI 7-05	Minimum Design Loads for Buildings and Other Structures
AISC 360-05	Specifications for Structural Steel Buildings
AISC	Code of Standard Practice
AWS D1.1	Structural Welding Code - Steel
ACI	$301-$ Specification for Structural Concrete
ACI	$302-$ Concrete Floor and Slab Construction
	$318-$ General Design of Reinforced Concrete
	Not Otherwise Specified

Figure 18 - Standards and Codes used in Design

[^4]The chart below lists the structural materials used in the design for NCHTNF:

Material Properties		
Material		Strength
Steel	Grade	$\mathrm{fy}=\mathrm{ksi}$
Wide Flange Shapes	A992	50
Hollow Structural Shapes	A500, GR. B	45
Plates	A36	36
Angles	A36	36
Reinforcing Steel	A615	60
Welded Wire Reinforcement	A497	N/A
Welding Electrodes	E70XX	70
Concrete	Weight (pcf)	$\mathrm{f}^{\prime} \mathrm{c}=\mathrm{psi}$
Footings/Mat Foundation	145	4,000
Foundation Piers	145	4,000
Foundation Walls $\leq 5^{\prime}$ Tall	145	4,000
Foundation Walls $>5^{\prime}$ Tall	145	5,000
Slab-On-Grade	145	4,000
Elevated Slabs	145	5,000
Columns	145	6,000
Shear Walls	145	5,000
Beams	145	5,000
Concrete On Metal Deck	145	4,000
Masonry	Grade	Strength $=$ ksi
Concrete Masonry Units	C90	$\mathrm{f}_{\mathrm{y}}=2.8$
Mortar	C270, Type S	$\mathrm{f}^{\prime}{ }_{\mathrm{m}}=1.8$

Figure 19 - Material Properties Used in Design

Lateral Design:

Portal Method:

The portal method estimates forces in members of laterally loaded multistory frames. The design process is based on a few assumptions ${ }^{9}$:

- Shears in the interior columns are twice as large as the shears in the exterior columns
- A point of inflection occurs at mid-height of each column
- A point of inflection occurs at mid-span of each girder

Figure 20 - Level 1 Structural Floor Plan Highlighting the Expansion Joint and Frames Analyzed. Courtesy SGH.

As mentioned before, NCHTNF is split into two different buildings for analysis purposes at the expansion joint, reference Figure 20. A "worst case scenario" frame is analyzed in each direction for both the hospital and clinic, shown in Figure 20 highlighted in dark grey. These frames are not standardized in height, so further assumptions are taken when performing the portal method. These assumptions modify the given assumptions to fit NCHTNF's irregular frames. The distribution factors applied to each column reflect an estimate of the stiffness of the individual assembly. These rough estimates are solely based on the geometry of the frames. Lateral forces resulting from 157 mph determined in Technical Report III are used for this lateral analysis. Lateral forces due to 110 mph design wind speed are determined using the same techniques used in Technical Report III, sample calculations found in Appendix A. The columns experience small axial loads due to the irregularity in height, but this is assumed as 0 kips because the axial load values are negligible. The portal frame analysis encompasses studying the frames with the loading for both 157 mph and 110 mph , sample calculations located in Appendix B. Even though this analysis is purely a lateral study, it provides an approximation to give a base point to start designing the columns and slab.

[^5]
Moment Transfer:

The transfer of moment from the column to the slab governs the design of slab-column connection. This ultimately determines if a slab has the capacity to withstand the transfer or if other solutions, such as stud rails or edge beams, are necessary.

Figure 21 - Flexure Transfer Fraction Equation. Courtesy Wight \& MacGregor.

ACl 318-08 section 13.5 .3 states when a gravity load and lateral forces cause transfer of moment between slab and column, a fraction of the unbalanced moment shall be transferred by flexure ${ }^{10}$. A fraction of the unbalanced moment, which this moment is calculated using the portal method, is considered to transfer by flexure within the effective beam width. The fraction transferred by flexure is calculated using the equation in Figure 21. Then, multiplying the fraction by the unbalanced moment determines the moment transferred by flexure, the rest being transferred by shear. Sample calculations can be found in Appendix C.

From this point, all the shear acting on the slab is calculated to determine if it exceeds the shear capacity of the effective slab beam. Appendix D shows the complete steps determining the total shear. Cells highlighted in red have exceeded $4 \sqrt{ } \mathrm{ff}^{\prime} \mathrm{c}$, meaning the slab-column connection cannot carry the moment transfer. This calculation determines the concrete moment frames with flat plate system is only applicable in certain areas of the building. The failed connections will need additional resistance for the applied shear.

Additionally, the 157 mph wind load case analysis stops at this point. Three out of four of the frames have the first three floors completely failing when the total shear is compared to the shear capacity. In conclusion, concrete moment frames are not a feasible choice for 157 mph wind load with NCHTNF.

[^6]
Shear Solutions:

There are many solutions to increase the shear capacity of the connection or decrease the transfer of moments. One simple solution is increase the size of columns, but the NCHTNF columns are already sufficiently large. Increasing the slab depth increases the shear capacity, but the slab is already $12^{\prime \prime}$ and a deeper slab is not feasible. Drop panels and column capitals help the moment transfer without requiring interior beams. This solution is not practical because the existing slab system already employs drop panels, which one of the goals of this thesis is removing these. Another solution is using stud rails at the slab-column connection. This adds shear capacity without adding additional concrete to the system. One last system is designing edge beams. The edge beams directly address the issue of inefficient shear capacity at the exterior slab-column connections without completely disrupting the open floor to ceiling heights. This thesis studies both stud rails and edge beams, which are both feasible solutions.

Specifically for slab-column connections, stud rails consist of rows of vertical studs attached to a plate on the top end, as shown in Figure 22. The shear studs rails are placed at the corner of columns and protrude out perpendicularly into the slab from this point ${ }^{11}$. ACI Chapter 11 states shear studs are capable of resisting shear and some moment ${ }^{12}$. Stud rails are only effective if their shear capacity is less than the shear being mitigated, which is the case for NCHTNF. The shear studs will require less formwork than the edge beams while still providing enough shear capacity for the slab-column connections. Sample calculations can be found in Appendix G.

Figure 22 - Example of Stud Rail Layout. Courtesy Wight \& MacGregor.

[^7]Edge beams help diminish the shear transfer between the slab-column connection, see Appendix H for an edge beam design. These concrete beams increase the stiffness at the perimeter of the building, which in turn alleviates a lot of the shear stress from the interior connections. Stiffening of the structure helps the deflection, which is needed because the calculated deflections surpass the code limits; discussed in detail in the ETABS Models section. This method also solves the shear capacity issue, but potentially creates another issue at the same time. Making the outer columns stiffer also makes the inner columns more obsolete. The shear is mitigated, but the outer frames need to be reanalyzed with the new stiffness to determine if they can carry the load. This would make an interesting study to determine if NCHTNF could be designed with edge beams and perimeter concrete moment frames, but time did not permit this study.

Structure Point Models:

Structure Point is a program analyzing column and slab designs for individual stories of a building under the assumption that the columns are fixed-fixed, as shown in Figure 23. The fixed condition forces the program to only analyze gravity loads, not a combination of lateral and gravity loads. Similar to the portal frame analysis, the Structure Point models provide a benchmark design for the concrete moment frames. Additionally, Structure Point takes into account changes in moment of inertia throughout the length of the slab. This is an advantage

Figure 23 - Example of end conditions in Structure Point Models. Courtesy Wight \& MacGregor. because programs like SAP and ETABS do not automatically compute calculations with the changed moment of inertia values. In conclusion, column dimensions, slab depth, and rebar sizing are determined using Structure Point. These results are used in SAP and ETABS models, which are discussed in the upcoming sections.

SAP Models:

Unlike Structure Point, SAP allows models to be studied under combined lateral and gravity loads. Also, SAP is beneficial for studying two dimensional frames instead of studying the entire building. It is advantageous to create a frame of reference to check the complete building model with. Additionally, SAP provides the means to manually inserting changes in the moment of inertia in the slab. Three elements are drawn and connected by two link elements to model the change in moment of inertia, shown in Figures 24 and 25.

Figure 24 - SAP Model of Frame
Figure 25 - SAP Model Detail of Link Elements

The two outer pieces represent the effective moment of inertia, which is determined from Figure 15. The inner piece represents the typical modified moment of inertia of the slab ${ }^{13}$. The link elements show the computer program the three line elements need to act as one while exhibiting different properties. The slab is modeled as the effective beam width to represent the portion of the slab that exhibits beam-like tendencies. A further explanation of the effective beam width theory can be found in the structural analysis and design introduction. Also, the lateral loads applied to the frame are determined based on an assumption. Due to symmetry, it is assumed the lateral loads distribute evenly to each frame. So a fraction of the total lateral load is applied to this frame. This assumption can be verified in ETABS with a complete building analysis, which is discussed in the next section.

[^8]| | Int. Column | | Ext. Column | |
| :---: | :---: | :---: | :---: | :---: |
| | Moment (ft-k) | Shear (k) | Moment (ft-k) | Shear (k) |
| Excel | 1013 | 135 | 506 | 68 |
| SAP | 1643 | 110 | 290 | 20 |

Figure 26 - Comparison of Calculated Versus Computer Generated Values

The SAP moment and shear outputs, as shown in Figure 26, are comparable to those from the Excel calculations. These numbers further verify the need for additional shear capacity, as was discussed earlier in this report. The moment outputs for the columns are within the interactions diagrams, diagrams located in Appendix E. Additionally, a slab capacity check can be found in Appendix F. Also, the SAP story displacements are within the code limits, see Figure 27. The ETABS deflections are not within the code limits; this will be discussed in the EATBS section. This analysis verifies the Excel calculations and also provides a check for the ETABS model.

	Deflections	
	SAP (in)	ETABS (in)
Story 6	2.92	3.38
Story 5	2.50	3.21
Story	1.99	2.93
Story 3	1.46	2.52
Story 2	0.93	1.98
Story 1	0.41	0.87
	Code Limit	2.93

Figure 27 - Frame and Building Deflections

ETABS Models:

The clinic portion of NCHTNF is modeled as a three dimensional structure in ETABS. This model includes all lateral resisting structural elements in the building as designed. Analysis assumptions included in the ETABS model include, but are not limited to:

- Rigid diaphragms modeled at each floor
- Structural members modeled with specific material property
- Wind loads are applied at the center of pressure
- Columns and the slab effective beam width are modeled as line elements
- Slab is also modeled as a shell element
- All restraints at the ground level are pinned

As an initial study, two ETABS models are created to compare the outputs of modeling the slab as a shell element with line elements representing the effective beam width of the slab (nonshell) and modeling the slab only as a shell element (shell), Figures 28 and 29 respectively. Additionally, each floor system is assigned a rigid diaphragm to provide adequate story displacement data. After applying gravity and lateral loads, the analyses significantly differed. The displacements significantly contrasted along with the moment and shear outputs. In conclusion, the non-shell model provides a more accurate representation of how NCHNF reacts to lateral and gravity loads.

The non-shell element's deflections exceed the code limitations, as shown in Figure 27, so the building needs additional stiffness. One solution is using edge beams, as was mentioned earlier in this report. The edge beams mitigate the shear capacity issues as well as make the building stiffer, resisting the lateral forces. The only issue with edge beams is the beams take the majority of the load to the perimeter of the building with the increase in stiffness, so the building needs to be reanalyzed to study placing the lateral system on the perimeter of the building.

As mentioned in the SAP section, the lateral loads are equally divided between each frame, assuming equal stiffness. To verify this assumption, take a section cut at each story and divide the story shear by the total base shear. Continue this method for each floor to determine the stiffness of the concrete moment frame. This analysis is not performed in this report due to time constraints. In conclusion, the ETABS model provides shear and moment outputs due to the gravity and lateral loads. Also, this model determines edge beams need to be installed to control the excessive deflections.

Torsion:

Lateral loads applied to a building induce torsion when the center of pressure and the center of mass are not located at the same point. If the center of pressure is not equal with the center of mass then a moment equal to the force multiplied by the eccentricity is produced. A formal torsion calculation is not necessary due to the building and lateral system's complete symmetry.

Foundation Check:

The critical overturning moment results in the direction with least depth, which is 90^{\prime} for NCHTNF. Wind loads control the design of the building, so the overturning moment is calculated using the wind forces per floor and individual heights. The resisting moment must exceed the overturning moment and is calculated by multiplying the weight of the building by the moment arm of half the width of the building. In summary, the resisting moment is much larger than the overturning moment. Figure 30 shows the calculation of both the overturning and resting moments.

The weight of the building decreases only slightly with the change from concrete moment frames to shear walls. This weight difference marginally changes the axial load on the column, which is still below the soil capacity given by the geotechnical engineer. Sample calculations can be found in Appendix I. So, the foundation does not require any redesigning due to the changes with the lateral system.

Overturning Moments			
Story	Wind Force (k)	Elevation (ft)	Moment (k-ft)
6	102	97.5	9,945
5	100	82.5	8,250
4	97	67.5	6,548
3	93	52.5	4,883
2	112	37.5	4,200
1	100	15	1,500
		Σ	35,326
		$\mathrm{M}_{\mathrm{r}}=15,700 \mathrm{kx} 45^{\prime}=$	706,500

Figure 30-Overturning and Resisting Moment Calculation

Conclusion:

This structural analysis and design has determined concrete moment frames are not beneficial for a design wind speed of 157 mph , but can be implemented for 110 mph . A two-way flat plate system can work if the extra shear capacity is addressed by using edge beams or stud rails. The models verify the hand calculations as well as providing data on story deflections. Edge beams will have to be used to stiffen the building to prevent the current excessive deflections. An additional analysis will have to be performed to study if perimeter concrete moment frames will be able to support NCHTNF with the addition of edge beams. In conclusion, the concrete moment frames are a feasible lateral system to implement in NCHTNF.

Daylighting Analysis:

A majority of the façades on NCHTNF are predominately glass systems. These exterior glass walls promote unfavorable heating conditions, which escalates the strain on the mechanical equipment. To solve this problem, the façade design incorporates louvers to control the sun's exposure to the building. This breadth focuses on analyzing the efficiency of the louvers for different times of day and specific days of the year on the south façade of the clinic. Additionally, a discussion about the use of sun shades instead of louvers is presented.

Daylighting a building has been a topic of discussion in the recent years with the emergence of green building. Natural light is the most sustainable source of light for interiors, promoting green building and high performance design. Another advantage is daylighting is a free source of light for a building. On the contrary, daylighting is not a reliable light source. The source of light is dependent on the time of day, season, and weather conditions. Even though this form of lighting is cheap, it is hard to control the quantity and direction. This is why many buildings use daylighting to supplement the electric lighting in an effort to balance the benefits and drawbacks of each system. An additional advantage to daylighting a building, unrelated to costs and energy savings, is positive psychological effects on the building occupants. Studies have shown providing an exterior view from a patient's recovery room increase their recovery time ${ }^{14}$. The Nemours Foundation wants a predominately glass façade building, so controlling the daylight of the building is implemented, hence the louvers.

Figure 31 - Louver Detail. Courtesy SGH.

Initially, the sun's path across NCHTNF is analytically studied using an Excel spreadsheet, found in Appendix J. The summer and winter solstices are studied because they represent the most extreme conditions of the sun's angles the building experiences. The Excel spreadsheet calculates angles showing where the sun's light passes over the building ${ }^{15}$. These sun angles are applied to the louver, louver design shown in Figure 31, to determine if it blocks the sun's light from entering the building's window. Additionally, the Excel calculations are verified with a Google SketchUp model. The model, reference Figure 32, shows the louvers adequately block the sun from the windows for only the summer solstice. Even though heat gain might not be problematic in the winter due to solar energy, the issue of glare requires attentions.

[^9]

Figure 32 - Analysis of louvers during summer and winter solstices

Figure 33 - Sun Shade Example. Courtesy lutron.com
Keeping with the theme of hurricane resistant design, the exterior louvers have the potential to become windborne debris in the event of a hurricane. Instead of using this form of passive solar shading, sun shades can be installed on the interior of the glass wall systems to block the sun's direct light. This eliminates any chance of the shading device becoming a windborne element because it is completely inside the building. An added benefit to this solution is it is

Figure 34 - Electricity Use in Office Buildings. Courtesy lutron.com.
more versatile with the integration of technology. Lutron promotes an automated shading system that adjusts its position in regards to the position of the sun and the intensity of the sun light, an example is shown in Figure 33. 43\% of a building's electricity is spent on lighting fixtures in a health care facility, see Figure 34 , which is a figure that should be strived to be reduced. The automated shades can be linked to the lighting system in the building, so the light fixtures react to the actions of the shades. If the shades rise to allow indirect sun light into the building, the lights automatically turn off ${ }^{16}$. This technologically intensive system is much more expensive than the louvers, but the versatility of the sun shading system has its advantages over louvers. Additionally, the automated sun shades are the most expensive sun shade system, so cheaper solutions are available.

[^10]
Building Envelope Performance Analysis:

NCHTNF predominately uses silicone structural sealant with minimal aluminum mullions as the structural system for the glass façade. Ultimately this sealant is chosen because the architect does not want the distinct lines aluminum mullions create in the design of the exterior of the building. This analysis studies the multiple advantages and disadvantages of using a silicone structural sealant versus a urethane sealant or aluminum mullions. Additionally an underlying theme of constructing a façade is quality control, involving various forms of testing procedures. The testing procedures of silicone structural sealant used in the field and warehouse are outlined and compared to those of aluminum mullions. Finally, an aluminum mullion design is presented as a substitution to the existing silicone structural sealant.

Comparison of Sealants and Mullions:

Figure 35 - Performing Probing Sealant Test. Courtesy SGH

Structural sealant typically lasts longer than urethane sealants in high UV exposure settings, which are the conditions NCHTNF experiences. Also, this sealant tends to make better bonds with metal and glass than urethane sealants. NCHTNF's façades are predominately metal and glass, making the silicone sealant much more beneficial. Furthermore, the silicone sealants are typically more watertight on day one, but of course deteriorate with time. Ultimately, SGH decided to use the silicone structural sealant for the façade design.

A disadvantage of any type of structural sealant is the detailed testing procedure. Structural sealant requires a probe test, specifically ASTM C1521 Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints. The sealant needs to be fully cured before it is tested, details concerning the testing process will be further discussed. Also, the substrate has to be completely clean and free of any debris and construction dust to ensure a proper bond between the sealant and façade material. In addition, this sealant naturally collects more dirt than aluminum mullions and looks dirtier over time. Also, sealants typically have a lifespan of 10-20 years. Tremco, the sealant manufacturer, does not provide any warranties for the sealant installed on NCHTNF. Aluminum mullions last longer than 10-20 years and do not require nearly as much maintenance. Finally, structural sealant systems tend to be more expensive than aluminum mullions designs.

Figure 36 - Sealant Curing on Paper. Courtesy SGH.

Figure 37 - Example of a Cup Test. Courtesy SGH.

Structural sealant requires a sealant probe test, ASTM C1521 Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints. This test requires testing every inch of the sealant. Before the test is performed, the sealant needs to be completely cured, which effects the installation schedule. Figure 35 shows a worker probing the sealant joint between the precast panels. It is extremely important for the substrate to be clean and free of any debris and construction dust because otherwise the sealant will fail.

As another method of quality control, Trainor, the facade manufacturer, implements simple sealant tests in the warehouse. The first test is placing a swatch of sealant on a piece of paper and allowing it to cure, see Figure 36. If the oils bleed out or the sealant never cures, the sealant has failed and a new batch needs to be made. An additional test to ensure quality control is the cup test, example shown in Figure 37. A popsicle stick is pushed into a cup full of sealant. After the sealant has cured, the popsicle stick is pulled out of the sealant. If the popsicle stick pulls out of the sealant, the sealant fails. The point of these two tests is simplicity in performance and the results are easily understood, so the factory workers can readily determine if the sealant is to a standard of installation.

NCHTNF Current Façade:

The current façade of NCHTNF uses a dual sealant waterproofing system with silicone structural sealant. Simpson Gumpertz \& Heger perform the sealant probe test of the building, which is comprised of testing both interior and exterior sealant joints throughout every inch of the building façade. This system is chosen largely due to aesthetic reasons, but this structural sealant is just as capable of waterproofing a building as aluminum mullions.

Seeing as how waterproofing is not an issue between using structural sealant versus aluminum mullions, the aluminum mullions are being designed to be compared for cost differences in this analysis. As mentioned before, the silicone structural sealant is more expensive and requires detailed testing to assure quality control. Aluminum mullions do not require a complicated installation and are cheaper, thus aluminum mullions should be implemented instead of structural sealant. The wind loading on the building results in an 8 mm thick aluminum mullion, calculations can be found in Appendix K.

Graduate Course Integration:

The thesis topic chosen directly uses knowledge gained in two graduate level courses. NCHTNF is modeled and analyzed in ETABS, which reflects the course theme from AE 597A, Computer Modeling of Buildings. This model is used to evaluate the building under lateral and gravity loads. The Building Enclosure Study includes material learned from AE 542, Building Enclosure Science and Design. Specifically, designing aluminum mullions and learning about façade products is covered in this class, which is applied to the façade study.

Final Summary:

The overall design goal of this thesis is met by designing a lateral system that creates a more flexible floor plan layout. A complicated design process filled with smaller studies leads to this overall conclusion. Summaries of each smaller study are presented below:

First, this report studies the feasibility of concrete moment frames for the current 157 mph design wind speed and the code minimum 110 mph design speed. The transfer of moment between the column and slab fails for the first three floors of NCHTNF using the 157 mph . Thus, it is determined the existing lateral system consisting of shear walls is much more sufficient than concrete moment frames. The 110 mph design yields a few places that fail with the moment transfer at the slab-column connection. It is determined that edge beams need to be employed to mitigate the shear failures at the slab-column connections and stiffen the building to control the excessive deflections. The deflections are determined to be an issue using the ETABS model.

Additionally, wind data is studied to determine if the 157 mph wind speed is necessary to design to for the building to be an area of refuge in the event of a large scale hurricane in Orlando. The maximum wind speeds in Orland for the past 56 years have only peaked at 79 mph , so it is fair to say the code minimum value of 110 mph is a valid design value. NCHTNF should never see 157 mph because the hurricane's wind speeds have usually diminished significantly once they are that far inland.

Also, the façade's sun controlling system and structural system are studied. The existing louvers adequately shade the building in the summer, but not in the winter. This creates issues for glare and unwanted extreme heating conditions. Automatic sun shades are presented as a solution to the louvers. This new design will also remove the need for the louvers, which can become windborne debris in a hurricane event. In addition to this lighting study, the structural design of the façade is studied. The main focus is determining which system will perform better during a hurricane. It is determined that although both the sealant and mullion systems are both equivalent in waterproofing, the aluminum mullions are a cheaper design option.

In summary, the concrete moment frames are a feasible lateral design for NCHTNF if edge beams are implemented to mitigate the excessive shear transfer and building deflection. The thesis design can be classified as successful because the initial design goals were met:

- The amount of useable space per floor is not decreased
- Drop panels are eliminated from the slab design
- Concrete moment frames are found feasible by hand, Structure Point, SAP, and ETABS
- Façade is analyzed and suggestions are presented to give it the ability to withstand a hurricane better.

References:

ACI 318-08. Farmington Hills, MI: American Concrete Institute, 2009. ("ACI 318-08" 2009)

American Concrete Institute publishes this code to provide requirements for structural concrete design. Discussions on torsional compatibility, stud rails, and combined lateral and gravity loads were followed for this thesis analysis

ASCE 7-05. Reston, VA: American Society of Civil Engineers, 2006. ("ASCE7-05" 2006)

American Society of Civil Engineers writes these standards to provide information on a variety of structural loading cases. Seeing as seismic does not control for NCHTNF, wind is the only load case ASCE7-05 is able to provide information for.

Choi, Jung-Wook, Chul-Soo Kim, Jin-Gyu Song, and Soo-Gon Lee. "Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures." KCI Concrete Journal, July 2001. http://www.ceric.net/wonmun2/kci/KCl_3_2001_13_2_49(C).pdf (accessed January 20, 2012). (Choi et al. 2001)

An article providing an opinion on using effective beam width coefficients for flat-plate system design and analysis. Details on modeling and analysis are presented with minimal theory.
"CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE." Computers \& Structures Inc., June 2008. http://www.compengineering.com/downloads/manuals/SAFE/SafeManuals/CSI Analysis Reference.pdf (accessed March 17, 2012). ("CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE" 2008)

Computers \& Structures Inc. provides a detailed guide explaining all the nuances to modeling buildings in analysis programs. For this thesis report, the sections concerning joints and link elements were studied.

DiLaura, David L., Kevin W. Houser, Richard G. Mistrick, and Gary R. Steffy. The Lighting Handbook Tenth Edition: Reference and Application. New York: Illuminating Engineering Society of North America, 2011. (DiLaura et al. 2011)

IES Lighting Handbook provides design, analysis, and reference data for many different lighting situations. This thesis report focused on Chapter 14, Designing Daylighting, to understand evaluating a daylit building.

Han, S. Whan, Y.-M. Park, and J. Oak Cho. "Effective beam width for flat plate frames having edge beams." Magazine of Concrete Research, November 2010. http://earthquake.hanyang.ac.kr/submenu/pdf/journal/[2010]_Han_Effective beam width for flat plate frames having edge beams.pdf (accessed March 17, 2012). (Han et al. 2010)

The academic article explained how the equivalent frame method is not accurate when analyzing a flat plate system with edge beams. The authors then propose the equivalent beam width method to use when analyzing this situation.

Houser, Kevin. "AE 497D Daylighting Analysis." Rome. June 15, 2011. (Houser 2011)

- This lecture was given by Dr. Kevin Houser, Architectural Engineering Professor at Penn State, during a study abroad class in Rome, Italy. His lecture detailed how to calculate sun angles geometrically along with the Excel spreadsheet developed throughout the class.

Leet, Kenneth, Chia-Ming Uang, and Anne Gilbert. Fundamentals of Structural Analysis, (New York: McGraw Hill, 2008), 638-643. (Leet et al. 2008)

The textbook gives a description of the theory behind the portal frame method. A complete example is provided, which was followed for the portal method analysis in this thesis analysis.

Lutron Electronics, Inc., "Lutron." Last modified 2012. Accessed March 14, 2012. http://www.lutron.com/Pages/Default.aspx. ("Lutron" 2012)

Lutron's website provided valuable information concerning "smart" sun shading devices. They also presented information concerning energy savings when utilizing their products effectively.

The Southeast Regional Climate Center, "Maximum Wind Speed (mph) for Selected Cities in the Southeast." Accessed March 20, 2012.
http://www.sercc.com/climateinfo/historial/maxwind.html . ("Maximum Wind Speed (mph) for Selected Cities in the Southeast"

SERCC provides the maximum wind speeds for selected cities in the Southeast United States. Most of their data has been gathered for at least 20 years.

Wight, James and James MacGregor, Reinforced Concrete Mechanics \& Design, (Upper Saddle, NJ: Pearson Prentice Hall, 2008), 641-731. (Wight et al. 2008)

- This book explains the theory behind design and analysis of two-way slabs. The structural depth of this thesis followed the Equivalent Frame Method along with combined lateral and gravity design methods outlined in the textbook

Appendix A: 110 mph Wind Load Calculation

A. 1 Wind Pressures

Table A.1-1 Hospital North-South Wind Calculations

North - South Hospital (MWFRS)									
Floor	Elevation	z	k_{z}	q_{2}	9 h	Windward(psf)	Leeward (psf)	Trib. Area (ft ${ }^{2}$)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.35	-9.50	2137.5	47
1	104.1	15	0.85	25.74	40.88	12.35	-9.50	5343.75	117
2	126.6	37.5	1.025	31.04	40.88	14.90	-9.50	5343.75	130
3	141.6	52.5	1.1	33.31	40.88	15.99	-9.50	4275	109
4	156.6	67.5	1.16	35.12	40.88	16.86	-9.50	4275	113
5	171.6	82.5	1.22	36.94	40.88	17.73	-9.50	4275	116
6	186.6	97.5	1.26	38.15	40.88	18.31	-9.50	4275	119
Penthouse	201.6	112.5	1.29	39.06	40.88	18.75	-9.50	5343.75	151
Roof	224.1	135	1.35	40.88	40.88	19.62	-9.50	3206.25	93
								2F	995
								Overturning Moment ($k^{*} f t$)	134000

Table A.1-2 Hospital East-West Wind Calculations

East - West Hospital (MWFRS)									
Floor	Elevation	z	k_{2}	q_{z}	9 h	Windward(psf)	Leeward (psf)	Trib. Area (ft ${ }^{2}$)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.64	-9.79	1125	25
1	104.1	15	0.85	25.74	40.88	12.64	-9.79	2812.5	63
2	126.6	37.5	1.025	31.04	40.88	15.24	-9.79	2812.5	70
3	141.6	52.5	1.1	33.31	40.88	16.36	-9.79	2250	59
4	156.6	67.5	1.16	35.12	40.88	17.25	-9.79	2250	61
5	171.6	82.5	1.22	36.94	40.88	18.15	-9.79	2250	63
6	186.6	97.5	1.26	38.15	40.88	18.74	-9.79	2250	64
Penthouse	201.6	112.5	1.29	39.06	40.88	19.19	-9.79	2812.5	82
Roof	224.1	135	1.35	40.88	40.88	20.08	-9.79	1687.5	50
								SF	537
								Overturning Moment ($k^{*} f t$)	72500

Table A.1-3 Clinic North-South Wind Calculations

North - South Clinic (MWFRS)									
Floor	Elevation	z	k_{z}	q_{z}	9 h	Windward(psf)	Leeward (psf)	Trib. Area (ft ${ }^{2}$)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.35	-9.50	1830	40
1	104.1	15	0.85	25.74	40.88	12.35	-9.50	4575	100
2	126.6	37.5	1.025	31.04	40.88	14.90	-9.50	4575	112
3	141.6	52.5	1.1	33.31	40.88	15.99	-9.50	3660	93
4	156.6	67.5	1.16	35.12	40.88	16.86	-9.50	3660	97
5	171.6	82.5	1.22	36.94	40.88	17.73	-9.50	3660	100
6	186.6	97.5	1.26	38.15	40.88	18.31	-9.50	3660	102
Penthouse	201.6	112.5	1.29	39.06	40.88	18.75	-9.50	4575	129
Roof	224.1	135	1.35	40.88	40.88	19.62	-9.50	2745	80
								SF	852
								Overturning Moment (k*ft)	115000

Table A.1-4 Clinic East-West Wind Calculations

East - West Clinic (MWFRS)									
Floor	Elevation	Z	k_{z}	q_{z}	9 h	Windward(psf)	Leeward (psf)	Trib. Area (ft ${ }^{2}$)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.64	-9.79	675	15
1	104.1	15	0.85	25.74	40.88	12.64	-9.79	1687.5	38
2	126.6	37.5	1.025	31.04	40.88	15.24	-9.79	1687.5	42
3	141.6	52.5	1.1	33.31	40.88	16.36	-9.79	1350	35
4	156.6	67.5	1.16	35.12	40.88	17.25	-9.79	1350	37
5	171.6	82.5	1.22	36.94	40.88	18.15	-9.79	1350	38
6	186.6	97.5	1.26	38.15	40.88	18.74	-9.79	1350	39
Penthouse	201.6	112.5	1.29	39.06	40.88	19.19	-9.79	1687.5	49
Roof	224.1	135	1.35	40.88	40.88	20.08	-9.79	1012.5	30
								SF	322
								Overturning Moment ($k^{*} f t$)	43500

Appendix B: Portal Method Analysis

B. 1 Hand Calculation

B. 2 Hospital (N-S) 157mph

dist. of forces 0.2	0.4	0.4	0.8	1
			Grid 19(E-W Hospital)	

moment (K)	162.3	tt-1	moment (L)	202.8	tt-k	moment (M)	405.7	ft-1	moment (N)	405.7	t-k	ment (P)	240.5	
axial (K)	32.1	k	axial (L)	0.0	k	axial (M)	0.0	k	axial (N)	56.1	k			
shear (K)	21.6	k	shear (L)	27.0	k	shear (M)	54.1	k	shear (N)	54.1	k			

shear (V)	54.7	k	shear (W)

B. 4 Clinic (N-S) 157 mph

story force (k) ${ }^{18}$			height (ft)	
				22.5
47				15
70				15
93				15
115				15
136				15
161				22.5
184				15
	30	30	30	width (ft)

Grid N (N-SClinic)

moment (K)	169.7	t-k	moment (L)	339.4	t-k \|moment (M)	339.4		moment (N)	169	t -k moment (P)	$251.5 \mathrm{ft}-\mathrm{k}$
axial (K)	16.8	k	axial (L)	0.0 k	axial (M)	0	k	axial (N)	16.8	k	
shear (K)	22.6	k	shear (L)	45.3 k	shear (N)	45.3		shear	22.6		

${ }^{\text {k }}$			M	N												
93					axial (0)	30.4	k	axial (R)	0.0 k	axial (S)	0 k	axial (T)		k	moment(0)	45.56
a			s	T	shear (Q)	38.1	k	$\frac{\operatorname{shajar}}{\text { sher }}$ (R)	$76.2{ }^{\text {2 }}$	shear (S)	76.2	shear (T)	38.1	k		

a	R	s	T														
93	z	z		moment (V)	429.3	ft-k	moment (W)	858.6 ft	- ${ }^{\text {moment (}}$ (${ }^{\text {a }}$	858.6		moment (Y)	429.3	ft-k	moment (z)	715.14	
115				axial (V)	47.7	k	axial (W)	0.0 k	axial (X)	0		axial (Y)	47.7	k			
v	w	x	Y	shear (V)	57.2	k	shear (W)	114.5 k	shear (X)	114.5		shear (Y)	57.2	k			

v	w	x	Y															
115 AE	AE	AE		moment (AA)	599.2	ft-k	moment (AB)	1198.3	ft-k	moment (AC)	1198.3	ft-k	moment (AD)	599.2	ft -k	moment (AE)	1028.5	
136				axial (AA)	68.6	k	axial (AB)	0.0		axial (AC)		k	axial (AD)	68.6	k			
AA	AB	AC	AD	shear (AA)	79.9	k	shear (AB)	159.8		shear (AC)	159.8	k	shear (AD)	79.9	k			

dis. offores 0.8
Girid10(EWClinic)

B. 6 Hospital (N-S) 110mph

storforece (k) ${ }_{12}$									height(tt)	
										22.5
31										15
45										15
60										15
74										15
88										15
104										22.5
119										15
30	30	30	30	30	30	30	30	30	30	widhth(ti)
										sum
dist. oforese 1							1.8		0.1	15.9

Gride (N.SHospital)

			Grid 19 (E-W Hospital)					
8								
				A		B	c	D
				A		в	c	D
8					J	1	1	
22								
				E		F	G	H
				E		F	G	H
22					P	,	P	
33								
				K		L	M	N
				K		L	M	N
					u	u	u	
3344								
				Q		R	s	T
				a		R	s	T
44					z	z	z	
54								
				v		w	x	Y
				v		w	x	Y
54					А ${ }^{\text {H }}$	AH	AH	
64								
	AA	AB	AC	AD		AE	AF	AG
AA		AB	AC	AD		AE	AF	AG
64 ${ }_{6}{ }_{4}$	AP	AP	AP		AP	AP	AP	
	Al	AJ	AK	AL		AM	AN	AO
Al		AJ	AK	AL		AM	AN	AO
76 86	AX	AX	AX		AX	AX	AX	
	AQ	AR	AS	${ }_{\text {at }}$		AU	AV	AW

moment (V)	201.3	$\mathrm{ft}-\mathrm{k} \mid$ moment (W)	251.6	$\mathrm{ft}-\mathrm{k}$	moment (X)	503.1	$\mathrm{ft}-\mathrm{k}$	moment (Y)	503.1	$\mathrm{ft}-\mathrm{k}$	moment (Z)

B. 8 Clinic (N-S) 110mph

Caitlin Behm
Structural Option

Appendix C: Moment Transfer Analysis

C. 1 Hospital (N-S) 157 mph

C. 2 Hospital (E-W) 157mph

C. 3 Clinic ($N-S$) 157mph

Grid N Clinic
$\mathrm{V}_{\mathrm{f}}=1 /\left(1+(2 / 3)\left(v\left(\mathrm{~b}_{1} / \mathrm{b}_{2}\right)\right)\right.$

$\mathrm{V}_{\mathrm{f}}=1 /\left(1+(2 / 3)\left(v\left(b_{1} / b_{2}\right)\right)\right.$
Floor 6

Floor 5

C. 4 Clinic (E-W) 157mph

gaidnoic																																														
	etal							itul								ital								inal							inal								etal							
(1)\|l	hayw															(1)\|lubivek																							willuplilub							
fiwi	a	3in		0	150		fivx	a	$8{ }^{\text {g }}$				${ }^{56}$		flab	a	ain				${ }^{\text {LS }}$		fla	a	fisin			bis																		
	b	3 n				4		b	$2{ }^{2}$							b	2 n							b	rin				a																	
	*	08		8				*	18		2			a								a		*	02																					
				b	2							b	150						b	h	140							b																		
	H1	mante	trasteratreare					1	Izande	Expluere						$1{ }^{1 / 4}$	1axste	mambluex						${ }^{1 / 4}$	mantr	tuaterabluere																				
		1382A.ti	trasemeldyer						mantik	tusterebtyer								tanamely ber								tumeratbear																				
fax	a	\% ${ }^{\text {n }}$					fum	a	sin						flus	a	ain						flw	a																						
	b	3 n						b	$2{ }^{2}$								2 m							,	2 n																					
	*	as						*	as								18							*	12																					
	H1	mustix	tratereftrave					4	129296	sturevtrue						(4)	2 mabat	tasamblume						${ }^{* 1}$	Bizath	tuaterabluere																				
		madatk	traberebevier						823Ats	tosterextbear								tusteretbler							zsyntit	tuderatb bear																				
fiva	a	xin 3 ln					fiva	a	${ }_{2 i n}^{2 i n}$						flow		$\underbrace{2 i n}$						flax	b	${ }_{\text {gin }}^{\text {min }}$																					
	${ }_{4}$	${ }_{08}$							${ }^{20}$		${ }^{6}$			a			${ }^{208}$							b	${ }_{0}^{20}$																					
												a	[5]												1.2																					
	${ }^{41}$	musist	trasteratrane					(1)	35 man	tusamerbluexe						/4/	3 gratic							${ }^{41}$	w3Sth	tuaterstimex																				
		3223 fik	trosterebtiear						wxylth	tomemerbyer							3 3994ti	traterely							3 manit	traterather																				
fiw 3		\% ${ }^{\text {n }}$					flu	a	Qin						flus	b	${ }_{6 i n}$		\cdots		43		fux	a	Sisin																					
		3 n						b	2 in								$\mathrm{min}^{\text {a }}$							b	3 in																					
		18						*	18								150							${ }^{\prime \prime}$	02																					
																			b																											
		6 6s96t	transfered byflexure					141		transfered byflexure						$1{ }^{1 / 4}$		transfered byflexure						\|il		transfered byflexure																				
			transferred byshear							tusterembly,							548974	transfered by shear							spl2fel	tusacremblyen																				
fim?	b	\%					fim2	a	${ }^{\text {fin }}$			3	15		fiom	a	${ }_{\text {fin }}$		3		${ }^{\text {LS }}$		five	a	${ }^{315}$			3 S																		
	a	3 n						b	3 n								3 n							b	yn				a																	
	*	18						+	as					4			as					4		*	03		${ }_{3} 5$																			
												b	151						b^{2}	-	[5]							b																		
	(1)	Imxati	trasteratrave					(1)	S918.6	tomemembue						+1/	9,1846	tanamablime						\|il	mextid	tuaterablime																				
		812374.	traterebevter						sgighe	tosterefebter							Ssight								9 mbjint	tuderatber																				
fiv1	a	\%					flow	4	6in						flow	a	6in						fly 1	a	nsin			4is		flow	a	sin			u	153		fix1	4	Min			4	197		
	b	3in						b	$3 \mathrm{~m}^{\text {n }}$,	3 n							b	3 n						b	un							b	2 n					b	
	*	18						*	aso							*	00							*	19				a		*	18					a		${ }^{1}$	0.5						
																												Sis							,	,							P			
	H1	yxatit	trasemedrame					$1{ }^{1}$		traterabluex						$1{ }^{1}$	19 9954.	taxamexthere						$1{ }^{10}$	urshel	tuatuablime					\% 4	IMSAdik	rasembleus						4	1238384	wsemembeur					
		maxtik	trasteraby						118970	traterablyer							1 L	traturublear							manatb	umberuther						1 2014tik	matereblider							H128.4.6	matemblider					

C. 6 Hospital (E-W) 110 mph

April 4, 2012	Nemours Children's Hospital as a part of The Nemours Foundation	Page 58

C. 7 Clinic ($N-S$) 110 mph

Grid N Clinic	
$v=1 /\left(1+(2 / 3) v\left(b_{b} / b_{2}\right)\right)$	

C. 8 Clinic (E-W) 110mph

April 4, 2012	Nemours Children's Hospital as a part of The Nemours Foundation	Page 60

Appendix D: Combined Shear \& Moment Transfer (Slab-Column Connection Shear Check)

D. 1 Hand Calculation

D． 2 Hospital 157mph

Level 6		column er	column Bz		ncb		nco		nck	mn co	n ch	Soumn
	${ }_{\text {bo }}$	${ }_{12}^{194}$	${ }_{1}^{120}$	160	160						${ }^{194}$	
	${ }_{\text {c }}$	${ }_{32}^{12}$	12 17	12 17	12 17	12 17	12 17	12 17	12 17	12 17	${ }_{32}^{12}$	
	vo	0.41	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	${ }_{0.41}$	
	M	1102	1102	1102	1102	1102	1102	1102	1102	1102	1102	
	vo．	53.33	106.5									
	\％	77733.1223	${ }^{324224}$	324224	324224	324224	324224	324224	324224	324224	77733.1223	
	b_{1}		${ }^{34}$	${ }^{34}$	${ }^{34}$		${ }^{34}$	${ }^{34}$	${ }^{34}$	${ }^{34}$	${ }^{32}$	
	${ }_{\substack{\text { b }}}^{\mathrm{b}_{2}}$	46 20	34 22 22	${ }_{22}^{34}$	${ }_{22}^{34}$	${ }^{34}$	${ }_{22}^{34}$	34 22 22	34 22 22	34 22 22	${ }_{20}^{46}$	
	${ }_{c}$	34	22	22	22	22	22	22	22	22	${ }_{39}$	
	vo	0.221131009	0.085507872	0．085507872	0．08550872	0.085507872	0．085507872	0．085507872	0.085507872	0．085507872	0.221131009	
Level 5	b。	194	160	160	160	160	160	160	160	176		
		${ }_{32}^{12}$	${ }_{17}^{12}$	12 17	12 17			12 17	12 17	12 17	${ }_{32}^{12}$	
	M	$\xrightarrow{0.41} 1875$	0．52 1885 185	0．52 1875	0．52 1875	（1．52	（1．52	（1．32	（0．52	－	（e．ti	
	v_{0}			106.5	${ }^{106.5}$			106.5				
	\％	7773.11243	${ }_{324224}$	${ }_{324224}$	${ }_{324224}$	324224	${ }_{324224}$	${ }_{324224}$	324224	${ }_{324224}$	77733．11243	
	${ }^{b_{1}}$		${ }^{34}$	${ }^{34}$	${ }^{34}$		${ }^{34}$	${ }^{34}$	34	34	32	
	${ }_{\text {ck }}$	46 20	34 22 22	${ }_{22}^{34}$	34 22 22	${ }^{34}$	${ }_{22}^{34}$	34 22 22	34 22 22	34 22 20		
	c_{2}	${ }_{39}^{20}$	${ }_{22}^{22}$	22	22	22	22	${ }_{22}^{22}$	${ }_{22}^{22}$	${ }_{22}^{22}$	${ }_{39}^{20}$	
	v。	0.354355188	0.10659369	0.10659369	0.10659369	0.10656936	0.10656936	0.106569369	0.10656936	0.101526756	0.354535188	
Level 4	b	${ }^{124}$	${ }^{176}$	${ }_{17}^{176}$	${ }_{17}^{17}$				${ }^{176}$			
		${ }_{32}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	12 19	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{32}^{12}$	
	m	（e．41	0．511 2861	0.51 2861		0.51 2861	0.41 2881					
	va		106．5	106．5								
	，	7773.11243	44992	499920	499920	49922	49920	499920	449920	499920	77733.1223	
		32 46 48	（ 38	（ 38	－${ }_{38}^{38}$		（ ${ }_{38}^{38}$	（ ${ }_{38}^{38}$	（38 38 88		32 48	
	c_{1}	20	${ }^{26}$	26	26	${ }^{26}$	${ }^{26}$	${ }^{26}$	${ }^{26}$	${ }^{26}$	20	
	c_{2}	${ }^{34}$	26	26	26	26	26	26	26	26	${ }^{34}$	
	vo	0.52883883	0.111723085	0.111723085	0.111723085	0.111723085	0.111723085	0.111723085	0.111723085	0.111723085	0.528838839	
Level 3	b_{0}	194	176	176	176		176	176	176	${ }^{176}$	194	
	d	${ }_{32}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{19}^{12}$	${ }_{32}^{12}$	
		0．a1	1.51 0.51 1005		$\begin{array}{r}\text { 0．51 } \\ \hline 101 \\ \hline 005 \\ \hline\end{array}$	（1．51	0．51				0．a1	
	M_{0}	${ }_{5}^{4031} 8$	4041 1006.5	4091 106.5	4041 106.5	4091 106.5	4041 106.5	4041 106.5	4041 1006.5	4091 106．5	4091 53.33	
	，	77733．11243	449920	499920	499920	499920	${ }_{4} 49920$	499920			77733.1223	
	b b_{1} b_{2}	哏32	（ ${ }_{38}^{38}$	（ 38	（ 38		（38 38	38 38 8			32 48 48	
	S	20	${ }^{26}$	${ }_{26} 26$	${ }_{26} 26$	268	${ }^{26}$	${ }_{26}{ }^{36}$	${ }^{26}$	26	${ }_{20}$	
			26		26	26	26	26	26	${ }^{26}$	${ }^{34}$	
	v．	0.72852133	0.13699796	0.136997796	0.13699779	0.136997796	0.136997796	0.136997796	0.13699796	0.136997796	0.72852133	
Level 2	。	156	192	192	192	192	192	192	192	192	148	
	d	${ }_{30}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{32}^{12}$	
	\％	$\underset{\substack{0.46 \\ 7827}}{\substack{\text { che }}}$	O．50 78827 1080	$\underset{\substack{\text { 0．50 } \\ 7827}}{ }$	（0．50	0．50 7827	（0．50	（0．50	O．50 7827	－	0．91	
	N。	7827 53.33	7827 106.5	7827 106.5		7827 106.5	7827	7827 106.5	7827 106.5		${ }_{\substack{7827 \\ 583}}^{\text {723 }}$	
	，	125874	600800	60asoo	609800	608800	60asoo	soasoo			7773.1223	
	b b_{1} b_{2}	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{46}^{32}$	
	${ }_{\text {ck }}$	${ }_{30}{ }^{42}$	42 30	${ }_{30}^{42}$	${ }_{30}^{42}$	${ }_{30}^{42}$	${ }_{30}^{42}$	30	${ }_{30}^{42}$	32	46 20	
	${ }_{c_{2}}$	30	30	${ }^{30}$	30	30	30	зо	30	30	${ }_{39}$	
	vo	0.87597699	0.181339717	0.181339717	0.18133971	0.18133971	0.181339717	0.18133971	0.181339717	0.18133971	${ }^{1.381983237}$	
Level 1	b_{0}	156	192	192	192		192	192	192	192	192	124
		${ }_{30}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$		${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{21}^{12}$	${ }_{22}^{12}$
	$\stackrel{\text { \％}}{\text { M }}$	0．46	0．50 $\begin{gathered}\text { 13283 } \\ \text { 130 }\end{gathered}$	（13283	（13283	（13283	（13283	（13283	0．50 $\begin{gathered}\text { 13283 } \\ \text { 130 }\end{gathered}$	0．50 $\begin{gathered}\text { 0．50 } \\ \text { 1383 }\end{gathered}$	0．50 $\begin{array}{r}1383 \\ \text { 130 }\end{array}$	（0．47
	va							106.5	106.5	106.5	${ }_{5}^{153.33}$	
	，	125874	609800	609800	608800	608800	608800	608800	608800			
	，	${ }_{12}^{22}$	${ }_{42}^{42}$	${ }_{42}^{42}$	${ }_{12}^{42}$		${ }_{42}^{42}$	${ }_{12}^{42}$	${ }_{42}^{42}$	${ }_{12} 2$	${ }_{12}^{42}$	${ }^{34}$
	${ }_{\substack{\text { a }}}^{\mathrm{b}_{2}}$	${ }_{30}^{42}$	42 30	42 30	${ }_{30}^{42}$	42 30	42 30	${ }_{30}^{42}$	42 30	${ }_{30}{ }_{3}$	30	34 22 2
	c_{2}	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{30}$	${ }^{30}$	30	${ }^{30}$	

$$
\begin{aligned}
& \begin{array}{l}
\text { Hospita (} \mathrm{E} \text { W) } \\
\text { Level } 6
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Level } 1
\end{aligned}
$$

D. 3 Clinic 157mph

D. 4 Hospital 110 mph

D. 5 Clinic 110mph

evel

Omph

$$
\leq 2820 \leq 3 \leq 00 \pi
$$

.

Appendix E: Column Interaction Diagrams

E. 1 N-S Clinic Frame 10 Exterior Column Interaction Diagram

E. 2 N-S Clinic Frame 10 Interior Column Interaction Diagram

Appendix F: Slab Capacity Check

F. 1 Hand Calculation

For a generalized gravity spot check Direct Design Method wrll beused even though not all the requirements were met.

$$
\text { SDL }=12 \text { pst (typical floor) } \quad L_{k}: 80(0.25+\cdot 15 / \sqrt{2(30)(30)})=48 \text { pst }
$$

$D L=$ self weight of concrete
$L L=80 p s t$
$W_{0}=1.2 W_{D}+1.6 W$
$W_{0}=1.2\left[\left(12^{11} / 12^{\prime \prime}\right)(14 s p c f)+12 p s t\right]+16[48 p s t]$
$w_{0}=265.2$ p5

* 30'—
slab thickness
$\ln / 3 B$ (Table 95 c wlo drop panel int panels) ($30^{\prime}-30^{\prime \prime} / 12^{*}$) $\times 12^{\prime \prime} / 33^{\prime \prime}=10^{\prime \prime}$ Siab minimum
$\rightarrow 12$ "slab used in design
Frame $A=$ Frame B blc of symmery
$M_{0}=1 / 8 \omega_{0} l_{2} l_{n}^{2}=1 / 8(0.265 \mathrm{ksf})\left(30^{\prime}\right)\left(30^{\circ}-30^{\circ} / 12^{\prime \prime}\right)^{2}=751.5 \mathrm{ft} \cdot \mathrm{K}$

Appendix G: Stud Rail Check

G. 1 Hand Calculation

Appendix H: Edge Beam Design

H. 1 Hand Calculation

Appendix I: Foundation Check

I. 1 Hand Calculation

Appendix J: Daylighting Spreadsheet

J. 1 Sun Angle Calculations - Summer Solstice Example

Solar Time, Solar Geometry, and Daylight Availability

Note: Calculations determine by Caitlin Behm. Excel template created during AE497D with Professor Kevin Houser.

Nemours Children's Hospital as a part of The Nemours Foundation

J. 2 Sun Angle Calculations - Summer Solstice Complete 24 Hours Study

Available Illuminance Calculations

	= User entered values														
	= Computed values														
			Chart Titles ==>		Solar Altitude	Solar Azimuth	Elevation Azimuth	Incident	Profile		Sun	Sun	Sky	Total	
Clock Time (AM/PM Format)	Clock Time (Decimal Format)	Solar Time (Decimal Format)	Solar Time (Clock Format)	Solar Time Angle (radians)	Altitude Angle	Azimuth Angle	Solar Elevation Azimuth (degrees)	Incident Angle (degrees)	Profile Angle (degrees)	Direct Normal Solar Illuminance (Ix)	Direct Horizontal Solar Illuminance (Ix)	Direct Vertical Solar Illuminance (Ix)	Horizontal Unobstructed Sky Illuminance (lx)	Total Horizontal Illuminance (Ix)	
12:00 AM	0.00	-1.45	-		-34.0°	-24.2 ${ }^{\circ}$	-24.2 ${ }^{\circ}$	$40.8{ }^{\circ}$	No Sun	0	0	0	0	0	
12:30 AM	0.50	-0.95	-		-36.3°	-16.2 ${ }^{\circ}$	-16.2 ${ }^{\circ}$	$39.3{ }^{\circ}$	No Sun	0	0	0	0	0	
1:00 AM	1.00	-0.45	-		-37.6°	$-7.8{ }^{\circ}$	$-7.8{ }^{\circ}$	$38.3{ }^{\circ}$	No Sun	0	0	0	0	0	
1:30 AM	1.50	0.05	12:03 AM		-38.0°	$0.9{ }^{\circ}$	$0.9{ }^{\circ}$	38.0°	No Sun	0	0	0	0	0	
2:00 AM	2.00	0.55	12:33 AM		-37.4°	$9.6{ }^{\circ}$	$9.6{ }^{\circ}$	$38.5{ }^{\circ}$	No Sun	0	0	0	0	0	
2:30 AM	2.50	1.05	1:03 AM		-35.9°	17.9°	17.9°	$39.5{ }^{\circ}$	No Sun	0	0	0	0	0	
3:00 AM	3.00	1.55	1:33 AM		$-33.4{ }^{\circ}$	25.7°	25.7°	41.2°	No Sun	0	0	0	0	0	
3:30 AM	3.50	2.05	2:03 AM		-30.2°	32.9°	$32.9{ }^{\circ}$	$43.5{ }^{\circ}$	No Sun	0	0	0	0	0	
4:00 AM	4.00	2.55	2:33 AM		-26.3 ${ }^{\circ}$	$39.3{ }^{\circ}$	39.3°	46.1°	No Sun	0	0	0	0	0	
4:30 AM	4.50	3.05	3:03 AM		-21.9 ${ }^{\circ}$	45.1°	45.1°	49.1°	No Sun	0	0	0	0	0	
5:00 AM	5.00	3.55	3:33 AM		-17.0 ${ }^{\circ}$	50.2°	50.2°	52.3°	No Sun	0	0	0	0	0	
5:30 AM	5.50	4.05	4:03 AM		-11.8 ${ }^{\circ}$	$54.9{ }^{\circ}$	$54.9{ }^{\circ}$	55.7°	No Sun	0	0	0	0	0	
6:00 AM	6.00	4.55	4:33 AM		-6.2 ${ }^{\circ}$	59.0°	59.0°	59.2°	No Sun	0	0	0	0	0	
6:30 AM	6.50	5.05	5:03 AM		-0.5 ${ }^{\circ}$	$62.8{ }^{\circ}$	$62.8{ }^{\circ}$	62.8°	No Sun	0	0	0	0	0	
7:00 AM	7.00	5.55	5:33 AM		5.5°	66.2°	66.2°	$66.4{ }^{\circ}$	$13.4{ }^{\circ}$	14,257	1,361	5,717	5,589	6,950	
7:30 AM	7.50	6.05	6:03 AM		11.6°	$69.5{ }^{\circ}$	$69.5{ }^{\circ}$	69.9°	$30.3{ }^{\circ}$	45,209	9,076	15,542	7,745	16,821	
8:00 AM	8.00	6.55	6:33 AM		17.8°	$72.5{ }^{\circ}$	$72.5{ }^{\circ}$	73.3°	$46.9{ }^{\circ}$	64,767	19,811	18,567	9,373	29,184	
8:30 AM	8.50	7.05	7:03 AM		24.1°	$75.4{ }^{\circ}$	$75.4{ }^{\circ}$	76.7°	$60.6{ }^{\circ}$	77,008	31,498	17,762	10,713	42,211	
9:00 AM	9.00	7.55	7:33 AM		$30.6{ }^{\circ}$	78.2°	78.2°	$79.8{ }^{\circ}$	70.8°	85,138	43,286	15,041	11,852	55,138	
9:30 AM	9.50	8.05	8:03 AM		37.0°	$80.9{ }^{\circ}$	$80.9{ }^{\circ}$	$82.8{ }^{\circ}$	78.2°	90,803	54,696	11,408	12,830	67,526	
10:00 AM	10.00	8.55	8:33 AM		$43.6{ }^{\circ}$	$83.8{ }^{\circ}$	$83.8{ }^{\circ}$	85.5°	$83.5{ }^{\circ}$	94,882	65,397	7,443	13,668	79,065	
10:30 AM	10.50	9.05	9:03 AM		50.1°	$86.8{ }^{\circ}$	86.8°	87.9°	87.3°	97,879	75,131	3,513	14,380	89,511	
11:00 AM	11.00	9.55	9:33 AM		56.7°	-89.9 ${ }^{\circ}$	-89.9 ${ }^{\circ}$	$89.9{ }^{\circ}$	$89.9{ }^{\circ}$	100,097	83,685	130	14,972	98,658	
11:30 AM	11.50	10.05	10:03 AM		63.3°	-85.9 ${ }^{\circ}$	-85.9 ${ }^{\circ}$	88.1°	87.9°	101,725	90,886	3,304	15,451	106,337	
12:00 PM	12.00	10.55	10:33 AM		69.9°	-80.5 ${ }^{\circ}$	-80.5 ${ }^{\circ}$	86.7°	$86.5{ }^{\circ}$	102,887	96,592	5,877	15,818	112,410	
12:30 PM	12.50	11.05	11:03 AM		76.3°	-71.6 ${ }^{\circ}$	-71.6 ${ }^{\circ}$	85.7°	85.6°	103,661	100,693	7,754	16,076	116,769	
1:00 PM	13.00	11.55	11:33 AM		82.1°	-51.6 ${ }^{\circ}$	-51.6°	85.1°	85.1°	104,096	103,112	8,871	16,227	119,338	
1:30 PM	13.50	12.05	12:03 PM		$84.9{ }^{\circ}$	8.0°	8.0°	$84.9{ }^{\circ}$	$84.9{ }^{\circ}$	104,218	103,804	9,192	16,269	120,073	
2:00 PM	14.00	12.55	12:33 PM		81.0°	57.6°	57.6°	85.2°	85.2°	104,033	102,755	8,706	16,205	118,960	
2:30 PM	14.50	13.05	1:03 PM		75.0°	73.9°	73.9°	$85.9{ }^{\circ}$	$85.8{ }^{\circ}$	103,531	99,986	7,429	16,032	116,018	
3:00 PM	15.00	13.55	1:33 PM		68.5°	81.7°	81.7°	87.0°	$86.8{ }^{\circ}$	102,682	95,548	5,403	15,752	111,300	
3:30 PM	15.50	14.05	2:03 PM		62.0°	86.8°	$86.8{ }^{\circ}$	88.5°	88.3°	101,432	89,525	2,698	15,362	104,887	
4:00 PM	16.00	14.55	2:33 PM		$55.4{ }^{\circ}$	-89.4 ${ }^{\circ}$	$-89.4{ }^{\circ}$	$89.7{ }^{\circ}$	$89.6{ }^{\circ}$	99,695	82,034	585	14,860	96,894	
4:30 PM	16.50	15.05	3:03 PM		$48.8{ }^{\circ}$	-86.2 ${ }^{\circ}$	-86.2°	87.5°	86.6°	97,336	73,222	4,303	14,244	87,466	
5:00 PM	17.00	15.55	3:33 PM		42.2°	-83.2 ${ }^{\circ}$	-83.2°	85.0°	$82.6{ }^{\circ}$	94,146	63,271	8,264	13,507	76,778	
5:30 PM	17.50	16.05	4:03 PM		35.7°	-80.4 ${ }^{\circ}$	$-80.4{ }^{\circ}$	82.2°	76.9°	89,791	52,402	12,196	12,641	65,043	
6:00 PM	18.00	16.55	4:33 PM		29.2°	-77.6 ${ }^{\circ}$	-77.6 ${ }^{\circ}$	79.2°	69.0°	83,709	40,883	15,698	11,632	52,516	
6:30 PM	18.50	17.05	5:03 PM		$22.8{ }^{\circ}$	-74.8 ${ }^{\circ}$	-74.8 ${ }^{\circ}$	76.0°	58.1°	74,905	29,071	18,128	10,456	39,527	
7:00 PM	19.00	17.55	5:33 PM		16.5°	-71.9 ${ }^{\circ}$	-71.9°	72.6°	$43.6{ }^{\circ}$	61,494	17,489	18,346	9,066	26,555	
7:30 PM	19.50	18.05	6:03 PM		$10.3{ }^{\circ}$	-68.8 ${ }^{\circ}$	-68.8 ${ }^{\circ}$	69.2°	26.7°	39,836	7,134	14,163	7,360	14,494	
8:00 PM	20.00	18.55	6:33 PM		4.2°	-65.6 ${ }^{\circ}$	-65.6 ${ }^{\circ}$	65.6°	10.2°	7,526	557	3,106	5,016	5,572	
8:30 PM	20.50	19.05	7:03 PM		-1.7°	-62.0 ${ }^{\circ}$	-62.0 ${ }^{\circ}$	62.1°	No Sun	0	0	0	0	0	
9:00 PM	21.00	19.55	7:33 PM		$-7.4{ }^{\circ}$	-58.2 ${ }^{\circ}$	-58.2 ${ }^{\circ}$	$58.5{ }^{\circ}$	No Sun	0	0	0	0	0	
9:30 PM	21.50	20.05	8:03 PM		-12.9 ${ }^{\circ}$	-54.0 ${ }^{\circ}$	$-54.0{ }^{\circ}$	55.0°	No Sun	0	0	0	0	0	
10:00 PM	22.00	20.55	8:33 PM		-18.0 ${ }^{\circ}$	-49.2 ${ }^{\circ}$	-49.2 ${ }^{\circ}$	51.6°	No Sun	0	0	0	0	0	
10:30 PM	22.50	21.05	9:03 PM		-22.8 ${ }^{\circ}$	-44.0 ${ }^{\circ}$	-44.0 ${ }^{\circ}$	$48.4{ }^{\circ}$	No Sun	0	0	0	0	0	
11:00 PM	23.00	21.55	9:33 PM		-27.1 ${ }^{\circ}$	-38.1°	-38.1°	45.5°	No Sun	0	0	0	0	0	
11:30 PM	23.50	22.05	10:03 PM		-30.9°	-31.5 ${ }^{\circ}$	-31.5°	43.0°	No Sun	0	0	0	0	0	

Note: Calculations determine by Caitlin Behm. Excel template created during AE497D with Professor Kevin Houser.

J. 3 Sun Angle Calculations - Winter Solstice Example

Solar Time, Solar Geometry, and Daylight Availability

Note: Calculations determine by Caitlin Behm. Excel template created during AE497D with Professor Kevin Houser.

Nemours Children's Hospital as a part of The Nemours Foundation

J. 4 Sun Angle Calculations - Winter Solstice Complete 24 Hours Study

Available Illuminance Calculations

	= User entered values														
	= Computed values														
			Chart Titles ==>		Solar Altitude	Solar Azimuth	Elevation Azimuth	Incident	Profile		Sun	Sun	Sky	Total	
Clock Time (AM/PM Format)	Clock Time (Decimal Format)	Solar Time (Decimal Format)	Solar Time (Clock Format)	Solar Time Angle (radians)	Altitude Angle	Azimuth Angle	Solar Elevation Azimuth (degrees)	Incident Angle (degrees)	Profile Angle (degrees)	Direct Normal Solar Illuminance (Ix)	Direct Horizontal Solar Illuminance (Ix)	Direct Vertical Solar Illuminance (Ix)	Horizontal Unobstructed Sky Illuminance (Ix)	Total Horizontal Illuminance (Ix)	
12:00 AM	0.00	-0.39	-		-82.7°	-47.7 ${ }^{\circ}$	-47.7°	85.1°	No Sun	0	0	0	0	0	
12:30 AM	0.50	0.11	12:06 AM		-84.7°	16.0°	16.0°	$84.9{ }^{\circ}$	No Sun	0	0	0	0	0	
1:00 AM	1.00	0.61	12:36 AM		$-80.4{ }^{\circ}$	60.2°	60.2°	85.2°	No Sun	0	0	0	0	0	
1:30 AM	1.50	1.11	1:06 AM		-74.3°	75.0°	75.0°	86.0°	No Sun	0	0	0	0	0	
2:00 AM	2.00	1.61	1:36 AM		-67.8°	82.3°	82.3°	87.1°	No Sun	0	0	0	0	0	
2:30 AM	2.50	2.11	2:06 AM		-61.2 ${ }^{\circ}$	87.2°	87.2°	88.7°	No Sun	0	0	0	0	0	
3:00 AM	3.00	2.61	2:36 AM		-54.7 ${ }^{\circ}$	-89.1°	-89.1 ${ }^{\circ}$	$89.5{ }^{\circ}$	No Sun	0	0	0	0	0	
3:30 AM	3.50	3.11	3:06 AM		-48.1 ${ }^{\circ}$	-85.8°	-85.8°	87.2°	No Sun	0	0	0	0	0	
4:00 AM	4.00	3.61	3:36 AM		-41.5°	-82.9 ${ }^{\circ}$	$-82.9{ }^{\circ}$	84.7°	No Sun	0	0	0	0	0	
4:30 AM	4.50	4.11	4:06 AM		-35.0°	-80.1°	-80.1°	81.9°	No Sun	0	0	0	0	0	
5:00 AM	5.00	4.61	4:36 AM		-28.5°	-77.3°	-77.3 ${ }^{\circ}$	78.9°	No Sun	0	0	0	0	0	
5:30 AM	5.50	5.11	5:06 AM		-22.10	-74.5 ${ }^{\circ}$	-74.5 ${ }^{\circ}$	$75.6{ }^{\circ}$	No Sun	0	0	0	0	0	
6:00 AM	6.00	5.61	5:36 AM		-15.8°	-71.6°	-71.6 ${ }^{\circ}$	72.3°	No Sun	0	0	0	0	0	
6:30 AM	6.50	6.11	6:06 AM		-9.6 ${ }^{\circ}$	-68.5 ${ }^{\circ}$	-68.5 ${ }^{\circ}$	68.8°	No Sun	0	0	0	0	0	
7:00 AM	7.00	6.61	6:36 AM		$-3.6{ }^{\circ}$	-65.2 ${ }^{\circ}$	-65.2 ${ }^{\circ}$	$65.3{ }^{\circ}$	No Sun	0	0	0	0	0	
7:30 AM	7.50	7.11	7:06 AM		2.3°	-61.6 ${ }^{\circ}$	-61.6 ${ }^{\circ}$	61.7°	$4.8{ }^{\circ}$	743	30	353	3,909	3,939	
8:00 AM	8.00	7.61	7:36 AM		8.0°	-57.8 ${ }^{\circ}$	-57.8 ${ }^{\circ}$	58.1°	$14.8{ }^{\circ}$	30,396	4,229	16,055	6,581	10,810	
8:30 AM	8.50	8.11	8:06 AM		$13.4{ }^{\circ}$	-53.5 ${ }^{\circ}$	-53.5 ${ }^{\circ}$	$54.6{ }^{\circ}$	21.9°	55,709	12,945	32,248	8,272	21,217	
9:00 AM	9.00	8.61	8:36 AM		$18.6{ }^{\circ}$	-48.7 ${ }^{\circ}$	-48.7 ${ }^{\circ}$	51.3°	27.0°	71,117	22,645	44,490	9,546	32,191	
9:30 AM	9.50	9.11	9:06 AM		$23.3{ }^{\circ}$	-43.4 ${ }^{\circ}$	$-43.4{ }^{\circ}$	48.1°	30.7°	80,899	32,016	54,009	10,551	42,567	
10:00 AM	10.00	9.61	9:36 AM		27.6°	-37.4 ${ }^{\circ}$	-37.4°	45.2°	$33.3{ }^{\circ}$	87,387	40,467	61,536	11,348	51,815	
10:30 AM	10.50	10.11	10:06 AM		31.3°	-30.7 ${ }^{\circ}$	-30.7°	42.7°	35.3°	91,779	47,654	67,428	11,969	59,623	
11:00 AM	11.00	10.61	10:36 AM		$34.3{ }^{\circ}$	$-23.4{ }^{\circ}$	$-23.4{ }^{\circ}$	40.7°	$36.6{ }^{\circ}$	94,727	53,354	71,858	12,433	65,787	
11:30 AM	11.50	11.11	11:06 AM		36.5°	-15.4 ${ }^{\circ}$	-15.4 ${ }^{\circ}$	39.2°	37.5°	96,595	57,413	74,908	12,750	70,163	
12:00 PM	12.00	11.61	11:36 AM		37.7°	-6.9°	-6.9°	38.3°	37.9°	97,587	59,732	76,617	12,927	72,658	
12:30 PM	12.50	12.11	12:06 PM		38.0°	$1.8{ }^{\circ}$	$1.8{ }^{\circ}$	38.1°	38.0°	97,804	60,255	76,999	12,966	73,221	
1:00 PM	13.00	12.61	12:36 PM		37.3°	$10.5{ }^{\circ}$	10.5°	$38.6{ }^{\circ}$	37.8°	97,267	58,971	76,059	12,869	71,840	
1:30 PM	13.50	13.11	1:06 PM		35.7°	$18.8{ }^{\circ}$	$18.8{ }^{\circ}$	39.7°	37.2°	95,923	55,909	73,787	12,633	68,543	
2:00 PM	14.00	13.61	1:36 PM		$33.1{ }^{\circ}$	$26.5{ }^{\circ}$	$26.5{ }^{\circ}$	41.5°	36.1°	93,632	51,143	70,162	12,255	63,399	
2:30 PM	14.50	14.11	2:06 PM		$29.8{ }^{\circ}$	$33.6{ }^{\circ}$	$33.6{ }^{\circ}$	43.7°	$34.5{ }^{\circ}$	90,133	44,794	65,129	11,727	56,521	
3:00 PM	15.00	14.61	2:36 PM		$25.8{ }^{\circ}$	40.0°	40.0°	46.4°	32.3°	84,960	37,042	58,576	11,035	48,076	
3:30 PM	15.50	15.11	3:06 PM		$21.4{ }^{\circ}$	45.7°	45.7°	$49.4{ }^{\circ}$	29.2°	77,276	28,151	50,269	10,155	38,307	
4:00 PM	16.00	15.61	3:36 PM		$16.4{ }^{\circ}$	$50.8{ }^{\circ}$	$50.8{ }^{\circ}$	52.7°	25.0°	65,503	18,545	39,723	9,047	27,593	
4:30 PM	16.50	16.11	4:06 PM		11.2°	55.3°	55.3°	56.1°	19.2°	46,549	9,024	25,971	7,624	16,648	
5:00 PM	17.00	16.61	4:36 PM		$5.6{ }^{\circ}$	$59.4{ }^{\circ}$	$59.4{ }^{\circ}$	$59.6{ }^{\circ}$	11.0°	16,139	1,582	8,165	5,653	7,234	
5:30 PM	17.50	17.11	5:06 PM		-0.2 ${ }^{\circ}$	63.2°	63.2°	63.2°	No Sun	0	0	0	0	0	
6:00 PM	18.00	17.61	5:36 PM		-6.1 ${ }^{\circ}$	$66.6{ }^{\circ}$	$66.6{ }^{\circ}$	$66.8{ }^{\circ}$	No Sun	0	0	0	0	0	
6:30 PM	18.50	18.11	6:06 PM		-12.2°	$69.8{ }^{\circ}$	$69.8{ }^{\circ}$	70.3°	No Sun	0	0	0	0	0	
7:00 PM	19.00	18.61	6:36 PM		-18.5 ${ }^{\circ}$	72.8°	$72.8{ }^{\circ}$	73.7°	No Sun	0	0	0	0	0	
7:30 PM	19.50	19.11	7:06 PM		-24.8°	75.7°	75.7°	77.0°	No Sun	0	0	0	0	0	
8:00 PM	20.00	19.61	7:36 PM		-31.3°	78.5°	$78.5{ }^{\circ}$	80.2°	No Sun	0	0	0	0	0	
8:30 PM	20.50	20.11	8:06 PM		-37.7 ${ }^{\circ}$	81.3°	81.3°	83.1°	No Sun	0	0	0	0	0	
9:00 PM	21.00	20.61	8:36 PM		-44.3 ${ }^{\circ}$	84.1°	84.1°	$85.8{ }^{\circ}$	No Sun	0	0	0	0	0	
9:30 PM	21.50	21.11	9:06 PM		-50.8°	87.1°	87.1°	88.2°	No Sun	0	0	0	0	0	
10:00 PM	22.00	21.61	9:36 PM		-57.4°	-89.5°	-89.5 ${ }^{\circ}$	$89.7{ }^{\circ}$	No Sun	0	0	0	0	0	
10:30 PM	22.50	22.11	10:06 PM		-64.0 ${ }^{\circ}$	-85.3°	-85.3 ${ }^{\circ}$	88.0°	No Sun	0	0	0	0	0	
11:00 PM	23.00	22.61	10:36 PM		$-70.6{ }^{\circ}$	-79.7 ${ }^{\circ}$	-79.7 ${ }^{\circ}$	$86.6{ }^{\circ}$	No Sun	0	0	0	0	0	
11:30 PM	23.50	23.11	11:06 PM		-76.9°	-70.2 ${ }^{\circ}$	-70.2 ${ }^{\circ}$	85.6°	No Sun	0	0	0	0	0	

Note: Calculations determine by Caitlin Behm. Excel template created during AE497D with Professor Kevin Houser.

Appendix K: Aluminum Mullion Design

K. 1 Hand Calculation

	Caltlin Behm	AE Senior Thes	Mullion Desic	2/2
(tops.	Deflection$\therefore t=8 \mathrm{~mm} \text { for aluminum mullion design }$$\square$			

[^0]: ${ }^{1}$ Wight, James and James MacGregor, Reinforced Concrete Mechanics \& Design, (Upper Saddle, NJ: Pearson Prentice Hall, 2008), 641-731.
 ${ }^{2}$ Kim, Hyun-Su, and Dong-Guen Lee. "Efficient Seismic Analysis of Flat Plate System Structures." 13th World Conference on Earthquake Engineering. (2004). http://www.iitk.ac.in/nicee/wcee/article/13_680.pdf (accessed February 15, 2012).
 ${ }^{3}$ Wight et al. 2008.

[^1]: ${ }^{4}$ Wight et al. 2008.
 ${ }^{5}$ Choi, Jung-Wook, Chul-Soo Kim, Jin-Gyu Song, and Soo-Gon Lee. "Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures." KCI Concrete Journal, July 2001. http://www.ceric.net/wonmun2/kci/KCl_3_2001_13_2_49(C).pdf (accessed January 20, 2012).
 ${ }^{6}$ Han, S. Whan, Y.-M. Park, and J. Oak Cho. "Effective beam width for flat plate frames having edge beams." Magazine of Concrete Research, November 2010. http://earthquake.hanyang.ac.kr/submenu/pdf/journal/[2010]_Han_Effective beam width for flat plate frames having edge beams.pdf (accessed March 17, 2012).

[^2]: ${ }^{7}$ ASCE 7-05. Reston, VA: American Society of Civil Engineers, 2006.

[^3]: ${ }^{8}$ The Southeast Regional Climate Center, "Maximum Wind Speed (mph) for Selected Cities in the Southeast." Accessed March 20, 2012. http://www.sercc.com/climateinfo/historial/maxwind.html .

[^4]: *Note: The 2007 Florida Building Code is based off of the International Building Code and subsidiary related codes.
 **Note: "Threshold Buildings" is defined as any building which is greater than 3 stories or 50 feet in height, or which has an assembly classification that exceeds 5,000 square feet in area and an occupant content of 500 people or greater.
 Materials Used:

[^5]: ${ }^{9}$ Leet, Kenneth, Chia-Ming Uang, and Anne Gilbert. Fundamentals of Structural Analysis, (New York: McGraw Hill, 2008), 638643.

[^6]: ${ }^{10}$ ACI 318-08. Farmington Hills, MI: American Concrete Institute, 2009.

[^7]: ${ }^{11}$ Wight et al. 2008
 ${ }^{12}$ "ACI 318-08" 2009

[^8]: ${ }^{13}$ "CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE." Computers \& Structures Inc., June 2008. http://www.compengineering.com/downloads/manuals/SAFE/SafeManuals/CSI Analysis Reference.pdf (accessed March 17, 2012).

[^9]: ${ }^{14}$ DiLaura, David L., Kevin W. Houser, Richard G. Mistrick, and Gary R. Steffy. The Lighting Handbook Tenth Edition: Reference and Application. New York: Illuminating Engineering Society of North America, 2011.
 ${ }^{15}$ Houser, Kevin. "AE 497D Daylighting Analysis." Rome. June 15, 2011.

[^10]: ${ }^{16}$ Lutron Electronics, Inc., "Lutron." Last modified 2012. Accessed March 14, 2012. http://www.lutron.com/Pages/Default.aspx.

