Thesis Final Report

Nemours Children's Hospital as a part of The Nemours Foundation

Caitlin Behm Structural Option Advisor: Dr. Boothby 04.02.12

General Information

Building Type:	Hospital
Building Size:	600,000 SF
Height:	135 ft
Construction:	July 2009-July2012
Cost:	\$400 million
Delivery:	Design-Bid-Build

Architecture

- 85-bed tower and outpatient center
- Glass curtain walls dominate the majority of the façade.
- Other materials include metal and terracotta panels.
- Main features of the building: curved curtain wall, deep canopies, and green roofs

Structure

- Concrete spread footings placed on improved soils
- Framing system consists of concrete columns and beams
- 12-14" elevated two-way flat slab with drop panels
- Lateral system comprises of shear walls located in elevator core and stairways

MEP

Nemours Children's Hospital as a part of The Nemours Foundation gains power from the Central Energy Plant (CEP) attached to the hospital. The CEP contains the main electrical and mechanical distribution systems, except for the AHUs.

CEP

- Three 1300 ton dual cell cooling towers
- Three 1300 ton centrifugal chillers
- Three water tube boilers
- Main and 15kV chiller source transfer switching
- Four 2250 kW generators

Hospital

- Thirty-two AHUs located on the 1st floor mezzanine or 7th floor mechanical room.
- Mix use of VAV and CV boxes

Project Team

Owner: The Nemours Foundation CM/GC: Skanska USA Building Architects: Stanley Beaman & Sears Perkins + Will Engineers: (Civil) Harris Civil Engineers (Structural) Simpson, Gumpertz & Heger (Landscape Architect) AECOM (MEP&T) TLC Engineering for Architecture

CPEP Website: http://www.engr.psu.edu/ae/thesis/portfolios/2012/CYB5027/index.html

Table of Contents

ACKNOWLEDGEMENTS
EXECUTIVE SUMMARY6
BUILDING INTRODUCTION
STRUCTURAL OVERVIEW
Foundation9
Floor System10
Framing System12
Lateral System12
Roof System13
THESIS OBJECTIVES14
Structural Analysis and Design14
Problem Statement14
Problem Solution15
Design Goals15
Breadth Studies16
MAE Requirements16
STRUCTURAL ANALYSIS AND DESIGN
Introduction
Design Codes21
Material Properties
Lateral Design23
Portal Method
Moment Transfer
Shear Solutions
Structure Point Models
SAP Models
ETABS Models
Torsion
Foundation Check
Conclusion 31
DAVLIGHTING ANALYSIS 32
BUILDING ENVELOPE STUDY
Comparison of Sealants and Mullions
NCHTNF Current Facade
GRADUATE COURSE INTEGRATION
FINAL SUMMARY
REFERENCES

APPENDIX A: 110 MPH WIND LOAD CALCULATION	42
APPENDIX B: PORTAL METHOD ANALYSIS	44
APPENDIX C: MOMENT TRANSFER ANALYSIS	53
APPENDIX D: COMBINED SHEAR & MOMENT TRANSFER	61
APPENDIX E: COLUMN INTERACTION DIAGRAMS	66
APPENDIX F: SLAB CAPACITY CHECK	67
APPENDIX G: STUD RAIL CHECK	70
APPENDIX H: EDGE BEAM DESIGN	71
APPENDIX I: FOUNDATION CHECK	77
APPENDIX J: DAYLIGHTING SPREADSHEET	78
APPENDIX K: ALUMINUM MULLION DESIGN	82

Acknowledgements:

I would like to thank The Nemours Foundation for allowing me to use The Nemours Children's Hospital as a part of The Nemours Foundation in Orlando, Florida for my senior thesis study.

Additionally, I would like to thank Simpson Gumpertz & Heger, especially Michael Bolduc and Cynthia Staats, for providing me with all the documents and reports needed to complete this project along with their invaluable advice and direction.

I would also like to thank the following professors at The Pennsylvania State University Architectural Engineering Department:

> Dr. Thomas Boothby Dr. Andres Lepage Dr. Kevin Houser Professor Parfitt Professor Holland The entire AE faculty and staff

A special thanks to my family and friends who have provided me with endless help and support these past five years.

Executive Summary:

Nemours Children's Hospital as a part of The Nemours Foundation (NCHTNF) is a 7-story building located in Orlando, Florida. The entire complex consists of a hospital, clinic, loading dock data center, central energy plant (CEP), and parking facility. The 600,000 square foot hospital consists of two components: a bed tower and outpatient center. The combined components will provide 85 beds, emergency department, diagnostics and ambulatory programs, educational and research centers, and an outpatient clinic. Stanley Beaman & Sears and Perkins + Will are the architects of the project. Harris Civil Engineers, Simpson Gumpertz & Heger, AECOM, and TLC Engineering for Architecture are responsible for the engineering design of NCHTNF. Skanska USA Building is acting as the construction manager and general contractor of the design-bid-build project, which is scheduled to be completed July 2012 after ground was broken July 2009.

This thesis focuses on redesigning the lateral system using concrete moment frames instead of the current concrete shear walls. The existing structure uses 157 mph design wind speed, far surpassing the minimum code level. This lateral analysis studies if concrete moment frames are feasible for 110 mph, the minimum design wind speed for Orlando, in addition to the 157mph case. Pending a practical design, concrete moment frames create an open floor plan by eliminating shear walls. These changes alter the weight of the building, so the foundation needs to be reevaluated.

Additionally, a flat plate system is considered rather than the current flat slab. Flat plate designs eliminate drop panels and column capitals, thus producing a more cost effective slab system with a reduction of formwork. The slab-column connections require detailed analyses to determine if the connection can withstand the moment transfer and applied shear. If the slab-column connections cannot carry the load, solutions are presented and studied to mitigate the moment transfer.

In addition to the lateral and floor system redesign, two breadth topics are explored. One topic is a daylighting study of the sun management of a south facing façade. This determines if the current louvers can adequately control the sun. Additionally, an alternative interior sun control system is presented. The second breath topic examines the structural system of the façade, for both constructability and maintainability. An aluminum mullion design is presented as an alternate to the current silicone structural sealant; comparisons of advantages and disadvantages of each drive the final decision.

Building Introduction:

NCHTNF is a 7-story building located in Orlando, Florida, shown in Figure 1. The entire complex consists of a hospital, clinic, loading dock data center, central energy plant (CEP), and parking facility. The 600,000 square foot hospital consists of two components: a bed tower and outpatient center. The combined components will provide 85 beds, emergency department, diagnostics and ambulatory programs, educational and research centers, and an outpatient clinic. Stanly Beaman & Sears and Perkins + Will are the architects of the Harris Civil Engineers, Simpson project. Heger, AECOM, and Gumpertz & TLC Engineering for Architecture are responsible for the engineering design of NCHTNF. Skanska USA

Figure 1 - Location of NCHTNF. Courtesy The Nemours Foundation.

Building is acting as the construction manager and general contractor of the design-bid-build project, which is scheduled to be completed July 2012 after ground was broken July 2009.

Figure 2 – Nemours Children's Hospital as a part of The Nemours Foundation. Courtesy The Nemours Foundation.

The design of this \$400 million building uses 2007 Florida Building Code with 2009 updates. The Florida Building Code is based on the International Building Code and subsidiary related codes. The building is classified as I-2 while the clinic can be considered business class, the hospital is industrial because of overnight patients, thus making the entire project industrial. The site is an undeveloped parcel of land that underwent clearing and mass grading to reach its current topography. The site location does not have any restrictions presiding over the NCHTNF's design.

The primary structure is concrete with curtain walls dominating the majority of the façade.

The glass curtain walls vary between metal sunscreen systems, fritt patterns, and insulated spandrels. Other building materials include ribbed metal panel system, terracotta tile wall system, terrazzo wall panels, and composite metal panels to complement the glass systems in the curtain walls. A curved curtain wall, deep canopies, and two green roof gardens provide additional architectural features to the building design.

NCHTNF is designed to withstand the effects of a category 3 hurricane using 157 mph design wind speed. The National Oceanic and Atmospheric Administration, NOAA, describes a category 3 hurricane as an event where devastating damage will occur, resulting in injury and death. The Nemours Foundation wants NCHTNF to be listed as a place of refuge, more technically known as an Enhanced Hurricane Protection Area, during a category 3 hurricane. This requires the building's design to at least meet NOAA's classification of a category 3 hurricane having sustained winds of 110-130 mph. To qualify as an Enhanced Hurricane Protection Area, the hospital is designed to these standards with a factor of safety.

The building envelope's design is more complex than most to meet the Enhanced Hurricane Protection Area standards. The modular curtain wall, constructed by Trainor, is designed with 30,000 feet of dual sealant joints to allow weeping between the two joints. A probe test is specified to be conducted after the sealant has cured to ensure the joint is working properly. The north side of the building features a curved curtain wall supported by slanted structural columns. The deep canopies and fritt pattern glass, acting as sun shading devices to provide adequate shading from the Florida sun, are prevalent

Figure 3 - Installation of Sun shading Device. Courtesy SGH.

throughout the building. An example of the one of the sun shading devices is shown in Figure 3. NCHTNF incorporates several different roofing systems to accommodate different functions of the roof. A fluid-applied membrane acts as the roofing system for the patient accessible roof gardens. Thermoplastic membrane roofing and SBS-modified bituminous membrane roofing comprise the other roofs on the building. A lab in Florida tested a mock-up of NCHTNF against conditions generated by a category 3 hurricane. A 2-story 10-bay mock-up is required to pass various tests to ensure the building envelope will be able to sustain the effects of a category 3 hurricane. Laminated glass and extensive use of roof fasteners help the building envelope meet the standards of the hurricane test.

The design of NCHTNF follows the USGBC's LEED prerequisites and credits needed for certification based on LEED for New Construction 2.2. The building has two green roof gardens on the second and fourth floor roofs as mentioned in the paragraph above. The green roofs double as outdoor gardens for patients as well as sustainability features for the building. NCHTNF has numerous sunshades to block the sun from the vast glass façades. Deep canopies provide shade for large spaces on the south façade of the building. The building's design implements Fritt pattern and insulated spandrel glass systems. These devices block some of the intense Florida sun to lessen the load on the HVAC system of the building.

Structural Overview:

NCHTNF bears on spread footings on either improved or natural soils, shown in Figure 4. The hospital and clinic portion of the building predominately consist of reinforced concrete, with the exception of steel framed mechanical penthouses. The loading dock data center and central energy plant are primarily steel framed structures. The lateral system is comprised of shear walls, most of which continue through the entire building height. NCHTNF uses unusual framing techniques for the wave and sloped curtain wall backup.

Figure 4 - Foundation Plan of NCHTNF. Courtesy SGH.

Foundation:

PSI, the geotechnical firm, performed nineteen borings across the site in January 2009. The soils generally consist of varying types of fine sands graded relatively clean to slightly silty in composition. The boring blow counts record the upper layers of sand to be of medium dense condition, while the lower layers of sand are generally loose to medium dense condition.

PSI recommends utilizing shallow foundations only if the foundation design implements soil improvement to increase the allowable bearing capacity used in the design. PSI proposes another foundation solution, if soil improvement is not desirable implement a pile foundation system. These reinforced augercast piles withstand considerably higher foundation loads than the shallow foundation system. The downside of augercast piles are they can bulge or neck where very loose soils are encountered, requiring stringent monitoring and quality control. Due to the specialized nature of the augercast piles for this project, spread footings with soil improvement is chosen as the foundation system for the NCHTNF.

Additionally, the water table is measured only 4 feet below the surface raises concerns about excavations. The sump system dewaters shallow excavations while deeper excavations require well-pointing or horizontal sock drains for proper dewatering.

Floor System:

NCHTNF has numerous types of floor construction due to different design requirements in different sections of the building. The building contains 5"-6" normal weight concrete as the slab on grade. A few sections of the foundation system utilize mat foundations, varying from 2' to 4'-3" normal weight concrete. The hospital and clinic are built with normal weight elevated two-way flat slabs, with and without drop panels, varying in depth from 9"-14". A typical structural floor plan detailing a typical 30'x30' bay is shown in Figures 5 and 6. The loading dock data center and central energy plant are constructed with a 4-1/2" 1-way slab on 3"-20 GA. composite metal deck, which is supported by a steel frame system. Some specialty areas, such as the green roof and the slab over the lecture hall, vary slightly from the typical slab in the remainder of the building.

There are 29 different concrete beam sizes in the NCHTNF. The beams range from 16" x20" to 89" x 48". The hospital and clinic predominately consist of 15' x 30' bays with a few 15' x 15' and 30' x 30' bays to accommodate for the elevator and stair core. The bays in the loading dock data center are irregular. They vary from the smallest being 21' x 30'-3" to the largest being 30' x 45' - 2". The central energy plant also has a variety of bay sizes, ranging from 22' x 11'-2" to 22' x 26'-7".

 Δ

ŝ

ΗŤ

<u> Saldo</u>

12.

Framing System:

The columns supporting the NCHTNF are mostly reinforced concrete columns. Steel columns support the mechanical penthouse on the 7th floor. The concrete columns supporting the hospital and clinic typically start at a dimension of 30" x 30" and taper to 22" x 22" by Level 6. The mechanical penthouse is constructed with W12x53 columns on both the hospital and clinic. W14x109, W10x49, W10x60, and W14x68 mainly support the loading dock data center. HSS8x8 and HSS12x8 dominate the central energy plant's supporting structure along with a few W12x65 and W12x79 columns.

Lateral System:

Shear walls resist lateral loads in the hospital and clinic of the NCHTNF. These walls are 12-14" thick and tie into mat foundations with dowels matching the typical wall reinforcement, mostly #8 bars. The shear walls are located in the elevator/stair core in the hospital and in the elevator bays and lecture hall in the clinic, which are highlighted below in green in Figure 7. Also, the central energy plant has one shear wall, the rest of the lateral system of the CEP being braced framing which, discussed in the next paragraph. A few shear walls include knockout panels to plan for future openings.

Figure 7 - Level 1 Structural Floor Plan Highlighting the Lateral System. Courtesy SGH.

Steel concentrically braced frames resist lateral loads in the loading dock data center and central energy plant, highlighted above in orange in Figure 7. Diagonal members, HSS6x6 and HSS5x5, brace into W14, W16, and W21 beams in the loading dock data center. Diagonal members, HSS8x8 and HSS8x8, brace into W18 and W21 beams respectively in the central energy plant. As mentioned above, the central energy plant has one shear wall along with the steel concentrically braced frame system. The loading dock data center and CEP will not be analyzed in this report.

The load path in NCHTNF starts with the wind load against the façade of the building. Once the load is applied to the façade it is transferred to the diaphragms on each floor. The diaphragms then transfer the load to the lateral elements, being reinforced concrete shear walls in the hospital and clinic and steel concentrically braced frames in the loading dock data center and CEP. These lateral elements transfer the load to the foundation system, the final step of the load path of NCHTNF.

Roof System:

NCHTNF has several different roofing systems to accommodate different functions of the roof. A fluid-applied membrane acts as the roofing system for the roof garden that is accessible to patients and also doubles as a green roof. The fluid-applied membrane utilizes type IV extruded polystyrene board insulation. The other roofs on the building are constructed with thermoplastic membrane roofing and SBS-modified bituminous membrane roofing. Each of these roofs use polyisocyanurate board insulation, which is type II glass fiber mat facer. The other roofing system is $1-1/2^{"} - 18$ GA. metal roof deck, located on the loading deck data center, central energy plant, and mechanical penthouses on the 7th floor.

Figure 8 - Green Roof Rendering. Courtesy SGH.

Figure 9 - Green Roof Rendering. Courtesy SGH.

Thesis Objective:

Structural Analysis and Design:

Problem Statement:

A primary design principle of NCHTNF is remembering the structure is first and foremost a children's hospital. The importance of an open floor plan is paramount, seeing as the goal is to not make the patients feel confined in the hospital. NCHTNF current design uses 39 shear walls for the lateral force resisting system. The central core in the hospital, where the majority of shear walls are located, has limited floor space due to the placement of shear walls, highlighted in figures 11 & 13. Similarly, floor space is limited in a portion of the clinic due to shear walls shown in figures 10 & 12. Additionally, the shear walls require coordination with MEP systems to provide penetrations for ducts and conduit passing through the walls without losing structural integrity of the wall.

Figure 10 - 3D Hospital ETABS Model

Figure 12 - 3D Clinic ETABS Model

Figure 11 - First Floor Hospital ETABS Model

Figure 13 - First Floor Clinic ETABS Model

The design of typical hospitals strives to have large floor to ceiling heights. The more vertical space provided allows for a less complicated coordination in the ceiling plenum. NCHTNF currently uses a flat slab floor system. This allows the slab to be supported without beams or girders, which results in higher floor to ceiling heights. These higher clearances provide more space for MEP equipment, which eases the coordination process. On the contrary, drop panels require additional time to construct because the construction process requires more formwork than with a two-way flat plate system.

Problem Solution:

The lateral system of NCHTNF will be redesigned using concrete moment frames. This reduces the number of shear walls in the building, which creates a more open floor plan. A study to determine whether the moment frames can be integrated within the slab depth, which might require changing the slab thickness, will be performed. The floor system is analyzed as a flat plate system in efforts to keep the high floor to ceiling heights and remove the need for drop panels. Removing the drop panels from the floor design may reduce construction time and cost because the formwork for the drop panels will not be required.

In addition to analyzing the proposed lateral system redesign using the existing 157 mph design wind speed, the minimum required code wind speed of 110 mph is studied too. These analyses focus on the feasibility of implementing concrete moment frames as the lateral system. Also, using the 110 mph can be justified as an adequate design wind speed for an Enhanced Hurricane Protected Area based on historical max wind speed data.

The lateral and floor systems changes result in a reduction in the overall weight of the building. The foundation of the building needs to be analyzed to determine if either the bearing force or overturning moment have been exceeded with the change in weight. Gravity members require evaluation to determine if they need a redesign with the combination of lateral and gravity loads. Additionally, a model of the building needs to be constructed to check drift limitations and torsion with the adjusted lateral system.

Design Goals:

The overall design goal of this project is to design a lateral system producing a more flexible architectural layout. An additional underlying theme is reducing the current design wind load on the building, while still meeting the Enhanced Hurricane Protection Area standards mentioned in the introduction of this report. Other goals to be met throughout this project include:

- Do not decrease the amount of useable space per floor
- Eliminate the need for drop panels, which require supplementary formwork
- Analyze the feasibility of concrete moments by hand, Structure Point, SAP, and ETABS
- Evaluate non-structural systems affected by designing the building to withstand a hurricane, such as the façade louvers and structural sealant.

Breadth Studies:

The façade of the building is predominately glass, as per the owner's request. An analysis of the sun shading system, consisting of specifically calculated size louvers, studies the existing control of the sun's exposure into the building. The analysis centers on studying the year-round daylighting of the building in an effort to maximize the performance of the glass wall system. An alternative sun controlling device is presented regardless of the outcome of the analysis of the current system.

Figure 14 – NCHTNF East Façade. Courtesy SGH.

The other study examines the efficiency of the sealant of the current façade, a section view of the façade is shown in Figure 14. An alternate façade structural system is investigated to compare efficiency of each system. The focus on waterproofing the building, seeing as one of the design focuses is making the building hurricane proof, determines the final choice of design. The new system considers the effects of thermal, air, and moisture infiltration along with the life cycle cost of the wall system.

MAE Requirements:

The MAE requirement for this report is met by modeling NCHTNF in ETABS. Generating computer models in various structural analysis programs is the curriculum of AE 597A – Computer Modeling of Buildings. This class explains how to manipulate building models, within structural analysis computer programs, and study the given results. Additionally, the MAE requirement is met with incorporating course material from AE 542 - Building Enclosure Science and Design. This course studies design and analysis of building façades, which applies to NCHTNF.

Structural Analysis and Design:

Introduction:

Concrete Moment Frames:

Concrete moment frames with a flat plate slab are analyzed as an alternative to the current shear wall system in NCHTNF. Moment frames are feasible when the building is below 8-10 stories, which NCHTNF's 8 story height falls within the requirement¹. The moment frames give the floor plan flexibility for layout and ease MEP coordination by eliminating cumbersome shear walls. Designing and modeling moment frames with the proposed slab-column connections is a subject that has not been completely developed. Much of this design process combines of a variety of ideas from different research papers and textbooks.

Gravity and lateral loads need to be simultaneously analyzed when designing a slab-column moment frame. Since, flat plate system designs primarily focus on solely resisting gravity loads, many researchers study if a flat plate can withstand combined lateral and gravity loads. The main issue is overestimating the lateral stiffness of the slab-column frame during the design process, which underestimates the lateral deflections². β , the cracked stiffness modifier, is a point of disagreement between researchers because this modifier has been assigned a range of values. The modifier helps negate the overestimation of lateral stiffness, giving reason to why it has not received an exact value. Figure 15 shows the given range of β values. In regards to slab-column connections, many researchers have decided on their own specific value of β . For example, Wight and MacGregor suggest using β =0.33 for both interior and exterior connections as well as positive bending regions and β =0.33 for negative bending regions. For this analysis, β =0.33 is used throughout, which is described in more detail in the modeling section³.

of slab-be	am elements	
Region of the slab	α -value (for effective width $\alpha \ell_2$)	$\frac{\beta \text{-value}}{(\text{for } I_e = \beta I_g)}$
Positive bending regions	0.5	0.5
Negative bending regions		0.5, for gravity analysis only
(interior columns)	0.5	0.33, for lateral-load analysi
Negative bending regions	0.2 to 0.5	
(exterior columns)	(function of edge beam stiffness)	0.33

Figure 15 - Alpha and Beta Values for Slab-Column Connections. Courtesy Wight & MacGregor

³ Wight et al. 2008.

¹ Wight, James and James MacGregor, Reinforced Concrete Mechanics & Design, (Upper Saddle, NJ: Pearson Prentice Hall, 2008), 641-731.

² Kim, Hyun-Su, and Dong-Guen Lee. "Efficient Seismic Analysis of Flat Plate System Structures." *13th World Conference on Earthquake Engineering*. (2004). http://www.iitk.ac.in/nicee/wcee/article/13 680.pdf (accessed February 15, 2012).

A slab-column connection experiences combined shear and moment transfer, so the capacity of the slab needs to be evaluated accordingly. The moment transfer is partially transferred by flexure with the remainder by shear; this is explained during the lateral system design section. The shear capacity must exceed that of the amount being transferred and if not, there are feasible solutions⁴. Examples being, the slab can be made deeper or expanding the cross section of a column increases the shear capacity of the slab-beam and decrease the shear and moment transfer. Also, stud rails, interior beams, and edge beams can be employed to mitigate the shear and moment transfer problem.

Equivalent Frame Method is commonly used for analysis of a flat plate structure subject to lateral loads. Of course finite element analysis is preferred, but this method gives a good base reference to compare a design to⁵. One drawback to equivalent frame method is the difficulty of applying it to buildings with openings in the slab. Slab openings are ignored in this analysis to simplify calculations. Additionally, some researchers believe the Effective Beam Width Method is more accurate than the Equivalent Frame Method when analyzing lateral loads on a flat plate system. According to research, Equivalent Frame Method may not produce accurate slab moments and lateral deflections while Equivalent Beam Width Method produces satisfactory results⁶.

⁴ Wight et al. 2008.

⁵ Choi, Jung-Wook, Chul-Soo Kim, Jin-Gyu Song, and Soo-Gon Lee. "Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures." *KCI Concrete Journal*, July 2001.

http://www.ceric.net/wonmun2/kci/KCI_3_2001_13_2_49(C).pdf (accessed January 20, 2012).

⁶ Han, S. Whan, Y.-M. Park, and J. Oak Cho. "Effective beam width for flat plate frames having edge beams." *Magazine of Concrete Research*, November 2010. http://earthquake.hanyang.ac.kr/submenu/pdf/journal/[2010]_Han_Effective beam width for flat plate frames having edge beams.pdf (accessed March 17, 2012).

Hurricane Design:

As mentioned earlier in this report, NCHTNF is designed using 157mph wind speed. This wind speed represents a category 3 hurricane, which has the possibility of creating catastrophic building failure, with a factor of safety. ASCE 7-05 requires NCHTNF to be built using a minimum of 110 mph design wind speed, so the chosen design wind speed far exceeds the code⁷. Appendix A shows the wind load calculations used for the 110 mph design speed. The orange star represents Orlando, which is within the green line, representing 110 mph design wind speed, shown in Figure 16. The reasoning of designing NCHTNF for 157 mph is The Nemours Foundation wants the building to be an area of refuge for the event of a hurricane crossing over Orlando. Besides the increased wind speed, no other considerations are taken into account to make NCHTNF an area of refuge.

⁷ ASCE 7-05. Reston, VA: American Society of Civil Engineers, 2006.

Research has shown in a 56 year data gathering time period, 79 mph is the highest recorded wind speed in Orlando, reference Figure 17⁸. Even though hurricanes make landfall in Florida, their winds dissipate once they reach inland Orlando. Seeing as the probability of experiencing 157 mph is extremely low, this thesis focuses using the 110 mph design wind speed instead of 157 mph. Additionally, calculations determine whether concrete moment frames can be designed using 157 mph design wind speed.

	YRS	JA	N	FE	в	M	AR	A	PR	м	AY	JL	JN	JU	IL	Α	UG	SE	P	0	ст	NO	v	D	EC	AN	N
Florida		DR	SP																								
APALACHICOLA, FL	48	Е	48	Е	42	Е	54	SE	51	SE	47	Е	55	Ν	63	NE	59	Е	67	NW	56	SE	47	SE	42	Е	67
DAYTONA BEACH, FL	57	26	43	20	44	24	58	18	46	22	48	33	40	34	43	15	69	11	58	5	53	50	39	34	40	15	69
FORT MYERS, FL	54	25	40	25	39	35	46	20	39	32	44	31	48	18	45	14	50	5	92	35	62	30	32	33	35	5	92
JACKSONVILLE, FL	25	30	38	30	39	22	44	32	46	29	34	28	39	26	57	11	38	80	46	21	31	33	38	31	40	26	57
KEY WEST, FL	29	27	41	12	57	22	54	1	58	13	46	18	40	12	61	18	61	12	62	15	71	12	47	26	39	15	71
MIAMI, FL	48	24	46	19	55	4	46	24	35	32	52	13	37	25	43	12	86	6	69	15	69	7	38	32	38	12	86
ORLANDO, FL	56	25	42	25	46	24	46	2	50	35	51	32	64	14	46	12	79	60	61	5	48	26	46	20	35	12	79
PENSACOLA, FL	33	31	40	13	40	16	39	33	43	12	39	29	46	27	76	14	56	12	77	22	39	21	35	20	36	12	77
TALLAHASSEE, FL	46	23	46	9	40	27	48	19	35	29	40	3	44	22	39	2	58	8	46	20	32	16	40	28	37	2	58
TAMPA, FL	53	32	44	32	50	29	43	28	44	36	46	31	67	32	58	11	38	34	56	21	40	25	40	36	45	31	67
WEST PALM BEACH, FL	56	29	48	11	48	27	51	32	55	27	45	9	71	34	46	13	86	26	64	13	83	10	39	36	38	13	86

Figure 17 - Florida Max Wind Speeds. Courtesy SERCC.

⁸ The Southeast Regional Climate Center, "Maximum Wind Speed (mph) for Selected Cities in the Southeast." Accessed March 20, 2012. http://www.sercc.com/climateinfo/historial/maxwind.html .

Design Codes:

The standards and codes of this structural analysis and design are the same used with the original design of NCHTNF:

Design Codes									
Code	Description								
Florida Building Code 2007*	With 2009 Updates								
Florida Statutes 471 & 553	Main Hospital/Clinic, CEP, & Loading Dock Data Center are all considered "Threshold Buildings"**								
ASCE/SEI 7-05	Minimum Design Loads for Buildings and Other Structures								
AISC 360-05	Specifications for Structural Steel Buildings								
AISC	Code of Standard Practice								
AWS D1.1	Structural Welding Code – Steel								
ACI	301 – Specification for Structural Concrete								
ACI	302 – Concrete Floor and Slab Construction								
	318 – General Design of Reinforced Concrete Not Otherwise Specified								

Figure 18 - Standards and Codes used in Design

*Note: The 2007 Florida Building Code is based off of the International Building Code and subsidiary related codes.

**Note: "Threshold Buildings" is defined as any building which is greater than 3 stories or 50 feet in height, or which has an assembly classification that exceeds 5,000 square feet in area and an occupant content of 500 people or greater. Materials Used: The chart below lists the structural materials used in the design for NCHTNF:

Material Properties						
Mat	Strength					
Steel	Grade	fy = ksi				
Wide Flange Shapes	A992	50				
Hollow Structural Shapes	A500, GR. B	45				
Plates	A36	36				
Angles	A36	36				
Reinforcing Steel	A615	60				
Welded Wire Reinforcement	A497	N/A				
Welding Electrodes	E70XX	70				
Concrete	Weight (pcf)	f'c = psi				
Footings/Mat Foundation	145	4,000				
Foundation Piers	145	4,000				
Foundation Walls ≤ 5' Tall	145	4,000				
Foundation Walls > 5' Tall	145	5,000				
Slab-On-Grade	145	4,000				
Elevated Slabs	145	5,000				
Columns	145	6,000				
Shear Walls	145	5,000				
Beams	145	5,000				
Concrete On Metal Deck	145	4,000				
Masonry	Grade	Strength = ksi				
Concrete Masonry Units	C90	f _y = 2.8				
Mortar	C270, Type S	f' _m = 1.8				

Figure 19 - Material Properties Used in Design

Lateral Design:

Portal Method:

The portal method estimates forces in members of laterally loaded multistory frames. The design process is based on a few assumptions⁹:

- Shears in the interior columns are twice as large as the shears in the exterior columns
- A point of inflection occurs at mid-height of each column
- A point of inflection occurs at mid-span of each girder

Figure 20 - Level 1 Structural Floor Plan Highlighting the Expansion Joint and Frames Analyzed. Courtesy SGH.

As mentioned before, NCHTNF is split into two different buildings for analysis purposes at the expansion joint, reference Figure 20. A "worst case scenario" frame is analyzed in each direction for both the hospital and clinic, shown in Figure 20 highlighted in dark grey. These frames are not standardized in height, so further assumptions are taken when performing the portal method. These assumptions modify the given assumptions to fit NCHTNF's irregular frames. The distribution factors applied to each column reflect an estimate of the stiffness of the individual assembly. These rough estimates are solely based on the geometry of the frames. Lateral forces resulting from 157 mph determined in Technical Report III are used for this lateral analysis. Lateral forces due to 110 mph design wind speed are determined using the same techniques used in Technical Report III, sample calculations found in Appendix A. The columns experience small axial loads due to the irregularity in height, but this is assumed as 0 kips because the axial load values are negligible. The portal frame analysis encompasses studying the frames with the loading for both 157 mph and 110 mph, sample calculations located in Appendix B. Even though this analysis is purely a lateral study, it provides an approximation to give a base point to start designing the columns and slab.

⁹ Leet, Kenneth, Chia-Ming Uang, and Anne Gilbert. *Fundamentals of Structural Analysis*, (New York: McGraw Hill, 2008), 638-643.

Moment Transfer:

The transfer of moment from the column to the slab governs the design of slab-column connection. This ultimately determines if a slab has the capacity to withstand the transfer or if other solutions, such as stud rails or edge beams, are necessary.

Figure 21 - Flexure Transfer Fraction Equation. Courtesy Wight & MacGregor.

ACI 318-08 section 13.5.3 states when a gravity load and lateral forces cause transfer of moment between slab and column, a fraction of the unbalanced moment shall be transferred by flexure¹⁰. A fraction of the unbalanced moment, which this moment is calculated using the portal method, is considered to transfer by flexure within the effective beam width. The fraction transferred by flexure is calculated using the equation in Figure 21. Then, multiplying the fraction by the unbalanced moment

determines the moment transferred by flexure, the rest being transferred by shear. Sample calculations can be found in Appendix C.

From this point, all the shear acting on the slab is calculated to determine if it exceeds the shear capacity of the effective slab beam. Appendix D shows the complete steps determining the total shear. Cells highlighted in red have exceeded $4\sqrt{f'c}$, meaning the slab-column connection cannot carry the moment transfer. This calculation determines the concrete moment frames with flat plate system is only applicable in certain areas of the building. The failed connections will need additional resistance for the applied shear.

Additionally, the 157 mph wind load case analysis stops at this point. Three out of four of the frames have the first three floors completely failing when the total shear is compared to the shear capacity. In conclusion, concrete moment frames are not a feasible choice for 157 mph wind load with NCHTNF.

¹⁰ ACI 318-08. Farmington Hills, MI: American Concrete Institute, 2009.

Shear Solutions:

There are many solutions to increase the shear capacity of the connection or decrease the transfer of moments. One simple solution is increase the size of columns, but the NCHTNF columns are already sufficiently large. Increasing the slab depth increases the shear capacity, but the slab is already 12" and a deeper slab is not feasible. Drop panels and column capitals help the moment transfer without requiring interior beams. This solution is not practical because the existing slab system already employs drop panels, which one of the goals of this thesis is removing these. Another solution is using stud rails at the slab-column connection. This adds shear capacity without adding additional concrete to the system. One last system is designing edge beams. The edge beams directly address the issue of inefficient shear capacity at the exterior slab-column connections without completely disrupting the open floor to ceiling heights. This thesis studies both stud rails and edge beams, which are both feasible solutions.

Specifically for slab-column connections, stud rails consist of rows of vertical studs attached to a plate on the top end, as shown in Figure 22. The shear studs rails are placed at the corner of columns and protrude out perpendicularly into the slab from this point¹¹. ACI Chapter 11 states shear studs are capable of resisting shear and some moment¹². Stud rails are only effective if their shear capacity is less than the shear being mitigated, which is the case for NCHTNF. The shear studs will require less formwork than the edge beams while still providing enough shear capacity for the slab-column connections. Sample calculations can be found in Appendix G.

Figure 22 - Example of Stud Rail Layout. Courtesy Wight & MacGregor.

¹¹ Wight et al. 2008

¹² "ACI 318-08" 2009

Edge beams help diminish the shear transfer between the slab-column connection, see Appendix H for an edge beam design. These concrete beams increase the stiffness at the perimeter of the building, which in turn alleviates a lot of the shear stress from the interior connections. Stiffening of the structure helps the deflection, which is needed because the calculated deflections surpass the code limits; discussed in detail in the ETABS Models section. This method also solves the shear capacity issue, but potentially creates another issue at the same time. Making the outer columns stiffer also makes the inner columns more obsolete. The shear is mitigated, but the outer frames need to be reanalyzed with the new stiffness to determine if they can carry the load. This would make an interesting study to determine if NCHTNF could be designed with edge beams and perimeter concrete moment frames, but time did not permit this study.

Structure Point Models:

Structure Point is a program analyzing column and slab designs for individual stories of a building under the assumption that the columns are fixed-fixed, as shown in Figure 23. The fixed condition forces the program to only analyze gravity loads, not a combination of lateral and gravity loads. Similar to the portal frame analysis, the Structure Point models provide a benchmark design for the concrete moment frames. Additionally, Structure Point takes into account changes in moment of inertia throughout the length of the slab. This is an advantage because programs like SAP and ETABS do not automatically

Figure 23 - Example of end conditions in Structure Point Models. Courtesy Wight & MacGregor.

compute calculations with the changed moment of inertia values. In conclusion, column dimensions, slab depth, and rebar sizing are determined using Structure Point. These results are used in SAP and ETABS models, which are discussed in the upcoming sections.

SAP Models:

Unlike Structure Point, SAP allows models to be studied under combined lateral and gravity loads. Also, SAP is beneficial for studying two dimensional frames instead of studying the entire building. It is advantageous to create a frame of reference to check the complete building model with. Additionally, SAP provides the means to manually inserting changes in the moment of inertia in the slab. Three elements are drawn and connected by two link elements to model the change in moment of inertia, shown in Figures 24 and 25.

The two outer pieces represent the effective moment of inertia, which is determined from Figure 15. The inner piece represents the typical modified moment of inertia of the slab¹³. The link elements show the computer program the three line elements need to act as one while exhibiting different properties. The slab is modeled as the effective beam width to represent the portion of the slab that exhibits beam-like tendencies. A further explanation of the effective beam width theory can be found in the structural analysis and design introduction. Also, the lateral loads applied to the frame are determined based on an assumption. Due to symmetry, it is assumed the lateral loads distribute evenly to each frame. So a fraction of the total lateral load is applied to this frame. This assumption can be verified in ETABS with a complete building analysis, which is discussed in the next section.

¹³ "CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE." Computers & Structures Inc., June 2008. http://www.compengineering.com/downloads/manuals/SAFE/SafeManuals/CSI Analysis Reference.pdf (accessed March 17, 2012).

	Int. Co	olumn	Ext. C	olumn		
	Moment (ft-k)	Shear (k)	Moment (ft-k)	Shear (k)		
Excel	1013	135	506	68		
SAP	1643	110	290	20		

Figure 26 - Comparison of Calculated Versus Computer Generated Values

The SAP moment and shear outputs, as shown in Figure 26, are comparable to those from the Excel calculations. These numbers further verify the need for additional shear capacity, as was discussed earlier in this report. The moment outputs for the columns are within the interactions diagrams, diagrams located in Appendix E. Additionally, a slab capacity check can be found in Appendix F. Also, the SAP story displacements are within the code limits, see Figure 27. The ETABS deflections are not within the code limits; this will be discussed in the EATBS section. This analysis verifies the Excel calculations and also provides a check for the ETABS model.

	Deflections							
	SAP (in)	ETABS (in)						
Story 6	2.92	3.38						
Story 5	2.50	3.21						
Story 4	1.99	2.93						
Story 3	1.46	2.52						
Story 2	0.93	1.98						
Story 1	0.41	0.87						
	Code Limit	2.93						

Figure 27 - Frame and Building Deflections

ETABS Models:

The clinic portion of NCHTNF is modeled as a three dimensional structure in ETABS. This model includes all lateral resisting structural elements in the building as designed. Analysis assumptions included in the ETABS model include, but are not limited to:

- Rigid diaphragms modeled at each floor
- Structural members modeled with specific material property
- Wind loads are applied at the center of pressure
- Columns and the slab effective beam width are modeled as line elements
- Slab is also modeled as a shell element
- All restraints at the ground level are pinned

As an initial study, two ETABS models are created to compare the outputs of modeling the slab as a shell element with line elements representing the effective beam width of the slab (nonshell) and modeling the slab only as a shell element (shell), Figures 28 and 29 respectively. Additionally, each floor system is assigned a rigid diaphragm to provide adequate story displacement data. After applying gravity and lateral loads, the analyses significantly differed. The displacements significantly contrasted along with the moment and shear outputs. In conclusion, the non-shell model provides a more accurate representation of how NCHNF reacts to lateral and gravity loads.

The non-shell element's deflections exceed the code limitations, as shown in Figure 27, so the building needs additional stiffness. One solution is using edge beams, as was mentioned earlier in this report. The edge beams mitigate the shear capacity issues as well as make the building stiffer, resisting the lateral forces. The only issue with edge beams is the beams take the majority of the load to the perimeter of the building with the increase in stiffness, so the building needs to be reanalyzed to study placing the lateral system on the perimeter of the building.

As mentioned in the SAP section, the lateral loads are equally divided between each frame, assuming equal stiffness. To verify this assumption, take a section cut at each story and divide the story shear by the total base shear. Continue this method for each floor to determine the stiffness of the concrete moment frame. This analysis is not performed in this report due to time constraints. In conclusion, the ETABS model provides shear and moment outputs due to the gravity and lateral loads. Also, this model determines edge beams need to be installed to control the excessive deflections.

Torsion:

Lateral loads applied to a building induce torsion when the center of pressure and the center of mass are not located at the same point. If the center of pressure is not equal with the center of mass then a moment equal to the force multiplied by the eccentricity is produced. A formal torsion calculation is not necessary due to the building and lateral system's complete symmetry.

Foundation Check:

The critical overturning moment results in the direction with least depth, which is 90' for NCHTNF. Wind loads control the design of the building, so the overturning moment is calculated using the wind forces per floor and individual heights. The resisting moment must exceed the overturning moment and is calculated by multiplying the weight of the building by the moment arm of half the width of the building. In summary, the resisting moment is much larger than the overturning moment. Figure 30 shows the calculation of both the overturning and resting moments.

The weight of the building decreases only slightly with the change from concrete moment frames to shear walls. This weight difference marginally changes the axial load on the column, which is still below the soil capacity given by the geotechnical engineer. Sample calculations can be found in Appendix I. So, the foundation does not require any redesigning due to the changes with the lateral system.

Overturning Moments							
Story	Wind Force (k)	Elevation (ft)	Moment (k-ft)				
6	102	97.5	9,945				
5	100	82.5	8,250				
4	97	67.5	6,548				
3	93	52.5	4,883				
2	112	37.5	4,200				
1	100	15	1,500				
		Σ	35,326				
		M _r =15,700 k x 45'=	706,500				

Figure 30 - Overturning and Resisting Moment Calculation

Conclusion:

This structural analysis and design has determined concrete moment frames are not beneficial for a design wind speed of 157 mph, but can be implemented for 110 mph. A two-way flat plate system can work if the extra shear capacity is addressed by using edge beams or stud rails. The models verify the hand calculations as well as providing data on story deflections. Edge beams will have to be used to stiffen the building to prevent the current excessive deflections. An additional analysis will have to be performed to study if perimeter concrete moment frames will be able to support NCHTNF with the addition of edge beams. In conclusion, the concrete moment frames are a feasible lateral system to implement in NCHTNF.

Daylighting Analysis:

A majority of the façades on NCHTNF are predominately glass systems. These exterior glass walls promote unfavorable heating conditions, which escalates the strain on the mechanical equipment. To solve this problem, the façade design incorporates louvers to control the sun's exposure to the building. This breadth focuses on analyzing the efficiency of the louvers for different times of day and specific days of the year on the south façade of the clinic. Additionally, a discussion about the use of sun shades instead of louvers is presented.

Daylighting a building has been a topic of discussion in the recent years with the emergence of green building. Natural light is the most sustainable source of light for interiors, promoting green building and high performance design. Another advantage is daylighting is a free source of light for a building. On the contrary, daylighting is not a reliable light source. The source of light is dependent on the time of day, season, and weather conditions. Even though this form of lighting is cheap, it is hard to control the quantity and direction. This is why many buildings use daylighting to supplement the electric lighting in an effort to balance the benefits and drawbacks of each system. An additional advantage to daylighting a building, unrelated to costs and energy savings, is positive psychological effects on the building occupants. Studies have shown providing an exterior view from a patient's recovery room increase their recovery time¹⁴. The Nemours Foundation wants a predominately glass façade building, so controlling the daylight of the building is implemented, hence the louvers.

Figure 31 - Louver Detail. Courtesy SGH.

Initially, the sun's path across NCHTNF is analytically studied using an Excel spreadsheet, found in Appendix J. The summer and winter solstices are studied because they represent the most extreme conditions of the sun's angles the building experiences. The Excel spreadsheet calculates angles showing where the sun's light passes over the building¹⁵. These sun angles are applied to the louver, louver design shown in Figure 31, to determine if it blocks the sun's light from entering the building's window.

Additionally, the Excel calculations are verified with a Google SketchUp model. The model, reference Figure 32, shows the louvers adequately block the sun from the windows for only the summer solstice. Even though heat gain might not be problematic in the winter due to solar energy, the issue of glare requires attentions.

¹⁴ DiLaura, David L., Kevin W. Houser, Richard G. Mistrick, and Gary R. Steffy. *The Lighting Handbook Tenth Edition: Reference and Application*. New York: Illuminating Engineering Society of North America, 2011.

¹⁵ Houser, Kevin. "AE 497D Daylighting Analysis." Rome. June 15, 2011.

Nemours Children's Hospital as a part of The Nemours Foundation

Figure 33 - Sun Shade Example. Courtesy lutron.com

Keeping with the theme of hurricane resistant design, the exterior louvers have the potential to become windborne debris in the event of a hurricane. Instead of using this form of passive solar shading, sun shades can be installed on the interior of the glass wall systems to block the sun's direct light. This eliminates any chance of the shading device becoming a windborne element because it is completely inside the building. An added benefit to this solution is it is

Figure 34 - Electricity Use in Office Buildings. Courtesy lutron.com.

more versatile with the integration of technology. Lutron promotes an automated shading system that adjusts its position in regards to the position of the sun and the intensity of the sun light, an example is shown in Figure 33. 43% of a building's electricity is spent on lighting fixtures in a health care facility, see Figure 34, which is a figure that should be strived to be reduced. The automated shades can be linked to the lighting system in the building, so the light fixtures react to the actions of the shades. If the shades rise to allow indirect sun light into the building, the lights automatically turn off¹⁶. This technologically intensive system is much more expensive than the louvers, but the versatility of the sun shading system has its advantages over louvers. Additionally, the automated sun shades are the most expensive sun shade system, so cheaper solutions are available.

¹⁶ Lutron Electronics, Inc., "Lutron." Last modified 2012. Accessed March 14, 2012. http://www.lutron.com/Pages/Default.aspx.

Building Envelope Performance Analysis:

NCHTNF predominately uses silicone structural sealant with minimal aluminum mullions as the structural system for the glass façade. Ultimately this sealant is chosen because the architect does not want the distinct lines aluminum mullions create in the design of the exterior of the building. This analysis studies the multiple advantages and disadvantages of using a silicone structural sealant versus a urethane sealant or aluminum mullions. Additionally an underlying theme of constructing a façade is quality control, involving various forms of testing procedures. The testing procedures of silicone structural sealant used in the field and warehouse are outlined and compared to those of aluminum mullions. Finally, an aluminum mullion design is presented as a substitution to the existing silicone structural sealant.

Comparison of Sealants and Mullions:

Figure 35 - Performing Probing Sealant Test. Courtesy SGH

Structural sealant typically lasts longer than urethane sealants in high UV exposure settings, which are the conditions NCHTNF experiences. Also, this sealant tends to make better bonds with metal and glass than urethane sealants. NCHTNF's façades are predominately metal and glass, making the silicone sealant much more beneficial. Furthermore, the silicone sealants are typically more watertight on day one, but of course deteriorate with time. Ultimately, SGH decided to use the silicone structural sealant for the façade design.

A disadvantage of any type of structural sealant is the detailed testing procedure. Structural sealant requires a probe test, specifically ASTM C1521 Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints. The sealant needs to be fully cured before it is tested, details concerning the testing process will be further discussed. Also, the substrate has to be

completely clean and free of any debris and

construction dust to ensure a proper bond between the sealant and façade material. In addition, this sealant naturally collects more dirt than aluminum mullions and looks dirtier over time. Also, sealants typically have a lifespan of 10-20 years. Tremco, the sealant manufacturer, does not provide any warranties for the sealant installed on NCHTNF. Aluminum mullions last longer than 10-20 years and do not require nearly as much maintenance. Finally, structural sealant systems tend to be more expensive than aluminum mullions designs.

Figure 36 - Sealant Curing on Paper. Courtesy SGH.

Figure 37 - Example of a Cup Test. Courtesy SGH.

Structural sealant requires a sealant probe test, ASTM C1521 Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints. This test requires testing every inch of the sealant. Before the test is performed, the sealant needs to be completely cured, which effects the installation schedule. Figure 35 shows a worker probing the sealant joint between the precast panels. It is extremely important for the substrate to be clean and free of any debris and construction dust because otherwise the sealant will fail.

As another method of quality control, Trainor, the facade manufacturer, implements simple sealant tests in the warehouse. The first test is placing a swatch of sealant on a piece of paper and allowing it to cure, see Figure 36. If the oils bleed out or the sealant never cures, the sealant has failed and a new batch needs to be made. An additional test to ensure quality control is the cup test, example shown in Figure 37. A popsicle stick is pushed into a cup full of sealant. After the sealant has cured, the popsicle stick is pulled out of the sealant. If the popsicle stick pulls out of the sealant, the sealant fails. The point of these two tests is simplicity in performance and the results are easily understood, so the factory workers can readily determine if the sealant is to a standard of installation.
NCHTNF Current Façade:

The current façade of NCHTNF uses a dual sealant waterproofing system with silicone structural sealant. Simpson Gumpertz & Heger perform the sealant probe test of the building, which is comprised of testing both interior and exterior sealant joints throughout every inch of the building façade. This system is chosen largely due to aesthetic reasons, but this structural sealant is just as capable of waterproofing a building as aluminum mullions.

Seeing as how waterproofing is not an issue between using structural sealant versus aluminum mullions, the aluminum mullions are being designed to be compared for cost differences in this analysis. As mentioned before, the silicone structural sealant is more expensive and requires detailed testing to assure quality control. Aluminum mullions do not require a complicated installation and are cheaper, thus aluminum mullions should be implemented instead of structural sealant. The wind loading on the building results in an 8mm thick aluminum mullion, calculations can be found in Appendix K.

Graduate Course Integration:

The thesis topic chosen directly uses knowledge gained in two graduate level courses. NCHTNF is modeled and analyzed in ETABS, which reflects the course theme from AE 597A, Computer Modeling of Buildings. This model is used to evaluate the building under lateral and gravity loads. The Building Enclosure Study includes material learned from AE 542, Building Enclosure Science and Design. Specifically, designing aluminum mullions and learning about façade products is covered in this class, which is applied to the façade study.

Final Summary:

The overall design goal of this thesis is met by designing a lateral system that creates a more flexible floor plan layout. A complicated design process filled with smaller studies leads to this overall conclusion. Summaries of each smaller study are presented below:

First, this report studies the feasibility of concrete moment frames for the current 157 mph design wind speed and the code minimum 110 mph design speed. The transfer of moment between the column and slab fails for the first three floors of NCHTNF using the 157 mph. Thus, it is determined the existing lateral system consisting of shear walls is much more sufficient than concrete moment frames. The 110 mph design yields a few places that fail with the moment transfer at the slab-column connection. It is determined that edge beams need to be employed to mitigate the shear failures at the slab-column connections and stiffen the building to control the excessive deflections. The deflections are determined to be an issue using the ETABS model.

Additionally, wind data is studied to determine if the 157 mph wind speed is necessary to design to for the building to be an area of refuge in the event of a large scale hurricane in Orlando. The maximum wind speeds in Orland for the past 56 years have only peaked at 79 mph, so it is fair to say the code minimum value of 110 mph is a valid design value. NCHTNF should never see 157 mph because the hurricane's wind speeds have usually diminished significantly once they are that far inland.

Also, the façade's sun controlling system and structural system are studied. The existing louvers adequately shade the building in the summer, but not in the winter. This creates issues for glare and unwanted extreme heating conditions. Automatic sun shades are presented as a solution to the louvers. This new design will also remove the need for the louvers, which can become windborne debris in a hurricane event. In addition to this lighting study, the structural design of the façade is studied. The main focus is determining which system will perform better during a hurricane. It is determined that although both the sealant and mullion systems are both equivalent in waterproofing, the aluminum mullions are a cheaper design option.

In summary, the concrete moment frames are a feasible lateral design for NCHTNF if edge beams are implemented to mitigate the excessive shear transfer and building deflection. The thesis design can be classified as successful because the initial design goals were met:

- The amount of useable space per floor is not decreased
- Drop panels are eliminated from the slab design
- Concrete moment frames are found feasible by hand, Structure Point, SAP, and ETABS
- Façade is analyzed and suggestions are presented to give it the ability to withstand a hurricane better.

References:

ACI 318-08. Farmington Hills, MI: American Concrete Institute, 2009. ("ACI 318-08" 2009)

 American Concrete Institute publishes this code to provide requirements for structural concrete design. Discussions on torsional compatibility, stud rails, and combined lateral and gravity loads were followed for this thesis analysis

ASCE 7-05. Reston, VA: American Society of Civil Engineers, 2006. ("ASCE7-05" 2006)

- American Society of Civil Engineers writes these standards to provide information on a variety of structural loading cases. Seeing as seismic does not control for NCHTNF, wind is the only load case ASCE7-05 is able to provide information for.
- Choi, Jung-Wook, Chul-Soo Kim, Jin-Gyu Song, and Soo-Gon Lee. "Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures." *KCI Concrete Journal*, July 2001. http://www.ceric.net/wonmun2/kci/KCI_3_2001_13_2_49(C).pdf (accessed January 20, 2012). (Choi et al. 2001)
 - An article providing an opinion on using effective beam width coefficients for flat-plate system design and analysis. Details on modeling and analysis are presented with minimal theory.
- "CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE." *Computers & Structures Inc.*, June 2008. http://www.compengineering.com/downloads/manuals/SAFE/SafeManuals/CSI Analysis Reference.pdf (accessed March 17, 2012). ("CSI Analysis Reference Manual For SAP2000, ETABS, and SAFE" 2008)
 - Computers & Structures Inc. provides a detailed guide explaining all the nuances to modeling buildings in analysis programs. For this thesis report, the sections concerning joints and link elements were studied.

DiLaura, David L., Kevin W. Houser, Richard G. Mistrick, and Gary R. Steffy. *The Lighting Handbook Tenth Edition: Reference and Application*. New York: Illuminating Engineering Society of North America, 2011. (DiLaura et al. 2011)

 IES Lighting Handbook provides design, analysis, and reference data for many different lighting situations. This thesis report focused on Chapter 14, Designing Daylighting, to understand evaluating a daylit building.

Han, S. Whan, Y.-M. Park, and J. Oak Cho. "Effective beam width for flat plate frames having edge beams." *Magazine of Concrete Research*, November 2010. http://earthquake.hanyang.ac.kr/submenu/pdf/journal/[2010]_Han_Effective beam width for flat plate frames having edge beams.pdf (accessed March 17, 2012). (Han et al. 2010)

The academic article explained how the equivalent frame method is not accurate when analyzing a flat plate system with edge beams. The authors then propose the equivalent beam width method to use when analyzing this situation.

Houser, Kevin. "AE 497D Daylighting Analysis." Rome. June 15, 2011. (Houser 2011)

 This lecture was given by Dr. Kevin Houser, Architectural Engineering Professor at Penn State, during a study abroad class in Rome, Italy. His lecture detailed how to calculate sun angles geometrically along with the Excel spreadsheet developed throughout the class.

Leet, Kenneth, Chia-Ming Uang, and Anne Gilbert. *Fundamentals of Structural Analysis*, (New York: McGraw Hill, 2008), 638-643. (Leet et al. 2008)

 The textbook gives a description of the theory behind the portal frame method. A complete example is provided, which was followed for the portal method analysis in this thesis analysis.

Lutron Electronics, Inc., "Lutron." Last modified 2012. Accessed March 14, 2012. http://www.lutron.com/Pages/Default.aspx. ("Lutron" 2012)

Lutron's website provided valuable information concerning "smart" sun shading devices.
They also presented information concerning energy savings when utilizing their products effectively.

The Southeast Regional Climate Center, "Maximum Wind Speed (mph) for Selected Cities in the Southeast." Accessed March 20, 2012. http://www.sercc.com/climateinfo/historial/maxwind.html . ("Maximum Wind Speed (mph) for Selected Cities in the Southeast"

SERCC provides the maximum wind speeds for selected cities in the Southeast United
States. Most of their data has been gathered for at least 20 years.

Wight, James and James MacGregor, Reinforced Concrete Mechanics & Design, (Upper Saddle, NJ: Pearson Prentice Hall, 2008), 641-731. (Wight et al. 2008)

 This book explains the theory behind design and analysis of two-way slabs. The structural depth of this thesis followed the Equivalent Frame Method along with combined lateral and gravity design methods outlined in the textbook

Appendix A: 110 mph Wind Load Calculation

A.1 Wind Pressures

Table A.1-1 Hospital North-South Wind Calculations

					No	rth - South Hos	pital (MWFRS	5)	
Floor	Elevation	Ζ	k _z	q _z	<i>q</i> _{<i>h</i>}	Windward(psf)	Leeward (psf)	Trib. Area (ft ²)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.35	-9.50	2137.5	47
1	104.1	15	0.85	25.74	40.88	12.35	-9.50	5343.75	117
2	126.6	37.5	1.025	31.04	40.88	14.90	-9.50	5343.75	130
3	141.6	52.5	1.1	33.31	40.88	15.99	-9.50	4275	109
4	156.6	67.5	1.16	35.12	40.88	16.86	-9.50	4275	113
5	171.6	82.5	1.22	36.94	40.88	17.73	-9.50	4275	116
6	186.6	97.5	1.26	38.15	40.88	18.31	-9.50	4275	119
Penthouse	201.6	112.5	1.29	39.06	40.88	18.75	-9.50	5343.75	151
Roof	224.1	135	1.35	40.88	40.88	19.62	-9.50	3206.25	93
								∑F	995
								Overturning Moment (k*ft)	134000

Table A.1-2 Hospital East-West Wind Calculations

					Ea	ast - West Hosp	ital (MWFRS)		
Floor	Elevation	Z	k _z	q_z	<i>q</i> _h	Windward(psf)	Leeward (psf)	Trib. Area (ft ²)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.64	-9.79	1125	25
1	104.1	15	0.85	25.74	40.88	12.64	-9.79	2812.5	63
2	126.6	37.5	1.025	31.04	40.88	15.24	-9.79	2812.5	70
3	141.6	52.5	1.1	33.31	40.88	16.36	-9.79	2250	59
4	156.6	67.5	1.16	35.12	40.88	17.25	-9.79	2250	61
5	171.6	82.5	1.22	36.94	40.88	18.15	-9.79	2250	63
6	186.6	97.5	1.26	38.15	40.88	18.74	-9.79	2250	64
Penthouse	201.6	112.5	1.29	39.06	40.88	19.19	-9.79	2812.5	82
Roof	224.1	135	1.35	40.88	40.88	20.08	-9.79	1687.5	50
								ΣF	537
								Overturning Moment (k*ft)	72500

					No	orth - South Clin	ic (MWFRS)		
Floor	Elevation	Z	k _z	q _z	<i>q</i> _h	Windward(psf)	Leeward (psf)	Trib. Area (ft ²)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.35	-9.50	1830	40
1	104.1	15	0.85	25.74	40.88	12.35	-9.50	4575	100
2	126.6	37.5	1.025	31.04	40.88	14.90	-9.50	4575	112
3	141.6	52.5	1.1	33.31	40.88	15.99	-9.50	3660	93
4	156.6	67.5	1.16	35.12	40.88	16.86	-9.50	3660	97
5	171.6	82.5	1.22	36.94	40.88	17.73	-9.50	3660	100
6	186.6	97.5	1.26	38.15	40.88	18.31	-9.50	3660	102
Penthouse	201.6	112.5	1.29	39.06	40.88	18.75	-9.50	4575	129
Roof	224.1	135	1.35	40.88	40.88	19.62	-9.50	2745	80
								ΣΕ	852
								Overturning Moment (k*ft)	115000

Table A.1-3 Clinic North-South Wind Calculations

Table A.1-4 Clinic East-West Wind Calculations

					E	ast - West Clini	c (MWFRS)		
Floor	Elevation	Z	k _z	q _z	q _h	Windward(psf)	Leeward (psf)	Trib. Area (ft ²)	Force (k)
Ground	89.1	0	0.85	25.74	40.88	12.64	-9.79	675	15
1	104.1	15	0.85	25.74	40.88	12.64	-9.79	1687.5	38
2	126.6	37.5	1.025	31.04	40.88	15.24	-9.79	1687.5	42
3	141.6	52.5	1.1	33.31	40.88	16.36	-9.79	1350	35
4	156.6	67.5	1.16	35.12	40.88	17.25	-9.79	1350	37
5	171.6	82.5	1.22	36.94	40.88	18.15	-9.79	1350	38
6	186.6	97.5	1.26	38.15	40.88	18.74	-9.79	1350	39
Penthouse	201.6	112.5	1.29	39.06	40.88	19.19	-9.79	1687.5	49
Roof	224.1	135	1.35	40.88	40.88	20.08	-9.79	1012.5	30
								ΣF	322
								Overturning Moment (k*ft)	43500

Appendix B: Portal Method Analysis

B.1 Hand Calculation

B.2 Hospital (N-S) 157mph

story force (k)								height (f	ft)																											
24								22.5																												
62						_		15																												
122								15																												
151								15																												
179								15																												
212								22.5																												
242								15																												
30 30 30	30	30	30	30	30	30) 30	width (f	ft)																											
dist of forces 1 2 2	2	2	2	2	1 0	1	0.1	sum	: 0																											
	2	2	2	2	1.0	1	0.1	15																												
	Grid	E (N-S Hosp	oital)																																	
24									moment (A)	16.8 f	ft-k moment	: (B)	33.6 ft-k	moment (C)	33.6	ft-k momen	t (D) 33.	6 ft-k mo	oment (E)	33.6 ft	-k moment (F)	33.6	ft-k moment (G) 33.6	ft-k momen	t (H) 30.2	2 ft-k									
A B C	D	E	F	G	Н				axial (A)	1.1 k	caxial (B)		0.0 k	axial (C)	0.0	k axial (D) 0.0) k axi	ial (E)	0.0 k	axial (F)	0.0	k axial (G)	0.0	k axial (H	2.0) <u>k</u>									
									shear (A)	1.5 k	shear (B)	3.0 k	shear (C)	3.0	k shear (L) 3.0) k shi	ear (E)	3.0 k	shear (F)	3.0	k shear (G)	3.0	k shear (F) 2.7	/ K									
A B C	D	F	F	G	н																															
24 U U U	U	U	U	U					moment (J)	40.6 f	t-k moment	: (K)	81.1 ft-k	moment (L)	81.1	ft-k momen	t (M) 81.	1 ft-k mo	oment (N)	81.1 ft	-k moment (P)	81.1	ft-k moment (Q) 81.1	ft-k momen	t (R) 73.0	0 ft-k m	noment (S)	40.6	t-k moment (T)	4.1	ft-k moment (U) 57.4	ft-k		
62									axial (J)	7.6 k	caxial (K)	. /	0.0 k	axial (L)	0.0	k axial (N) 0.0) k axi	ial (N)	0.0 k	axial (P)	0.0	k axial (Q)	0.0	k axial (R)	0.0) ka	xial (S)	0.0	axial (T)	0.3	k	,			
J K L	М	N	Р	Q	R	S	T		shear (J)	5.4 k	k shear (K)	10.8 k	shear (L)	10.8	k shear (N	<i>I</i>) 10.	8 k shi	ear (N)	10.8 k	shear (P)	10.8	k shear (Q)	10.8	k shear (R) 9.7	/ k sł	hear (S)	5.4	shear (T)	0.5	k				
	14	N	n	0	D	c	т																													
62 AF AF AF	ΔF	ΔF	ΔF	Q AF	Λ	ς Σ	F		moment (V)	84.2 f	t-k moment	(W) ·	168.4 ft-k	moment (X)	168.4	ft-k momen	t (Y) 168	4 ft-k mr	oment (7)	168.4 ft	-k moment (AA)	168.4	ft-k moment (AB) 168.4	ft-k momen	t (AC) 151	6 ft-k m	noment (AD)	84.2	t-k moment (AF	84	ft-k moment (ΔF) 91.8	ft-k		
93	7.1	7.0	74	74	7.1	7.1			axial (V)	14.4 k	caxial (W)	0.0 k	axial (X)	0.0	k axial (Y)	0.0) k axi	ial (Z)	0.0 k	axial (AA)	0.0	k axial (AB)	0.0	k axial (A	c(/(c)/ 101) k a	xial (AD)	0.0	axial (AE)	7.0	k	1117 51.0			
V W X	Y	Z	AA	AB	AC	AD	AE		shear (V)	11.2 k	k shear (W	/)	22.5 k	shear (X)	22.5	k shear (Y) 22.	5 k shi	ear (Z)	22.5 k	shear (AA)	22.5	k shear (AB)	22.5	k shear (A	.C) 20.2	2 k sł	hear (AD)	11.2	shear (AE)	1.1	k				
		_																																		
	Y AO	Z	AA	AB	AC	AD	AE		mamant (AC)	141.0 4	6 I	(411)	202 6 4 1	momont/Al	202.0	64	+/AI\ 202	C ft lung	ana ant (AV)	202.6	.	202 C	ft k manant (A A 4) 202 C	ft le mamon	- (ANI) 200	2 44 14 100		141.0	t lunament / AD	14.2	ft le moment /	150 1	6 I.		
122 AQ AQ AQ	AQ	AQ	AQ	AQ	AQ		1		axial (AG)	25.5 k	c axial (AF	(AT) 4	205.0 IL-K	axial (AI)	0.0	k axial (A	I) 0.0) k axi	ial (AK)	265.0 II	axial (AL)	265.0	k axial (AM)	0.0	k axial (A	V) 0.0	.2 nt-k n	xial (AO)	0.0	axial (AP)	11.9	k	AUJ 150.2	IL-K		
AG AH AI	AJ	AK	AL	AM	AN	AO	AP		shear (AG)	18.9 k	shear (A	H)	37.8 k	shear (AI)	37.8	k shear (A	J) 37.	8 k sh	ear (AK)	37.8 k	shear (AL)	37.8	k shear (AM) 37.8	k shear (A	N) 34.0	D k sl	hear (AO)	18.9	shear (AP)	1.9	k				
AG AH AI	AJ	AK	AL	AM	AN	A0	AP		. (10)	242.0	N I	(40)	405.0 (1.1	. / 4 7	1 405.0	6.1	. (0 (1)	. (405.0 (1	. (105.0	6.1	110 105 0	0.1	(4)() 202	0 0 1	. ()	242.0		1 24.2	0.1	200 5	0.1		
122 BB BB BB	BR	BR	BR	BR	BB	6 BE	3		moment (AR)	213.0 f	t-k moment	(AS) 4	425.9 ft-k	moment (AI) 425.9	ft-k momen	t(AU) 425	.9 ft-k mo	oment (AV)	425.9 ft	-k moment (AW)	0.0	ft-k moment (/	AX) 425.9	ft-k momen	t(AY) 383.	.3 ft-k m	noment (AZ)	213.0	t-k moment (BA	10.2	ft-k moment (BB) 238.5	TT-K		
AR AS AT	AU	AV	AW	AX	AY	AZ	BA		shear (AR)	28.4 k	shear (A	s)	56.8 k	shear (AT)	56.8	k shear (A	U) 56.	8 k sh	ear (AV)	56.8 k	shear (AW)	56.8	k shear (AX)	56.8	k shear (A	Y) 51.3	1 k si	hear (AZ)	28.4	shear (BA)	2.8	k				
												-/						- <u> </u>									- 1. 18									
AR AS AT	AU	AV	AW	AX	AY	AZ	BA																				_			_						
151 BM BM BM	BM	BM	BM	BM	BM	1 BN	N		moment (BC)	297.2 f	t-k moment	: (BD) 5	594.5 ft-k	moment (BE) 594.5	ft-k momen	t (BF) 594	.5 ft-k mo	oment (BG)	594.5 ft	-k moment (BH)	594.5	ft-k moment (E	BI) 594.5	ft-k momen	t (BJ) 535.	0 ft-k m	noment (BK)	297.2	t-k moment (BL)) 29.7	ft-k moment (BM) 336.8	ft-k		
I/9 PC PD PF	RE	RG.	RH	RI	RI	RK.	RI		axiai (BC)	30.5 K	c axiai (BL	וי	0.0 K	axiai (BE)	0.0	K axiai (Bi	-) U.((E) 70) K axi	Ial (BG)	0.0 K	axiai (BH)	0.0	k shear (BI)	70.3	k shear (B) 0.0) Kai	xiai (BK)	20.6	(axial (BL)	25.9	ĸ				
	ы	50	DII	ы	55	DK	DL		Sileal (DC)	JJ.0 r	sileal (D		75.5 K	Sileal (DL)	19.5	K SHEdi (L	nj 75.	5 1 511		73.3 K	Silear (DII)	75.5	K Siledi (DI)	13.5	K Siledi (L	<u>, , , , , , , , , , , , , , , , , , , </u>	J N 31	near (DK)	33.0	Siledi (DL)	4.0	ĸ				
BC BD BE	BF	BG	BH	BI	BJ	BK	BL																													
179 BX BX BX	BX	BX	BX	BX	BX	B	K		moment (BN)	595.8 f	ft-k moment	(BO) 1	L191.5 ft-k	moment (BP) 1191.5	ft-k momen	t (BQ) 1191	5 ft-k mo	oment (BR)	1191.5 ft	-k moment (BS)	1191.5	ft-k moment (I	BT) 1191.5	ft-k momen	t (BU) 1072	.4 ft-k m	noment (BV)	595.8	t-k moment (BV	V) 59.6	ft-k moment (BX) 652.2	ft-k		
212 PN DO PD	PO	DD	DC	DT	יוס	p\/	D\4/		axial (BN)	103.0 k	c axial (BC))	0.0 k	axial (BP)	0.0	k axial (B	(1) 0.0) k axi	ial (BR)	0.0 k	axial (BS)	0.0	k axial (BT)	0.0	k axial (Bl	J) 0.0) ka:	xial (BV)	0.0	axial (BW)	49.4	K				
RIN RO Rh	вŲ	ык	вŞ	RI	вU	BV	BW		snear (BN)	53.U k	snear (B	0)	102'A K	snear (BP)	105.9	к snear (E	ių) 105	y K Shi	ear (BK)	105.9 k	snear (BS)	102.9	k snear(BT)	105.9	K snear (B	95.:	5 K SI	near (BV)	53.0	snear (BW)	5.3	ĸ				
																																		_	+	
BN BO BP	BQ	BR	BS	BT	BU	BV	BW																													
212 CJ CJ CJ	CJ	CJ	CJ	CJ	CJ	CJ	J		moment (BY)	511.1 f	it-k moment	t (BZ) 1	1022.3 ft-k	moment (CA) 1022.3	ft-k momen	t (CB) 1022	3 ft-k mo	oment (CC)	1022.3 ft	-k moment (CD)	1022.3	ft-k moment (0	CE) 1022.3	ft-k momen	t (CF) 920.	.1 ft-k m	noment (CG)	511.1	t-k moment (CH	l) 51.1	ft-k moment (CI) 51.1	ft-k moment (CJ	1106.9	ft-k
242					-				axial (BY)	77.2 k	k axial (BZ	:)	0.0 k	axial (CA)	0.0	k axial (C	3) 0.0) k axi	ial (CC)	0.0 k	axial (CD)	0.0	k axial (CE)	0.0	k axial (Cl	-) 0.0) ka:	xial (CG)	0.0	axial (CH)	0.0	k axial (CI)	3.4	k	\square	
BY BZ CA	CB	CC	CD	CE	CF	CG	СН	CI	shear (BY)	68.2 k	k shear (B	Z) (136.3 k	shear (CA)	136.3	k shear (C	.в) 136	.3 k sh	ear (CC)	136.3 k	shear (CD)	136.3	k shear (CE)	136.3	k shear (C	F) 122.	.7 k si	hear (CG)	68.2	shear (CH)	6.8	k shear (CI)	6.8	K		

B.3 Hospital (E-W) 157mph

story force (k)	-				height (ft)																				
17					22.5																				
45					15																				
67					15																				
89					15																				
110					15																				
130					15																				
154					22.5																				
176					15																				
30 30	30	30	30	30	width (ft)																				
					sum																				
dist. of forces 0.2 0.4	0.4	0.8	1	2	4.8																				
	Grid 1	9 (E-W Ho	spital)																						
17												moment (A)	32.4	ft-k moment (B)	40.5	ft-k	moment (C)	81.0	ft-k	moment (D)	81.0	ft-k			
		A	В	С	D							axial (A)	2.2	k axial (B)	0.0	k	axial (C)	0.0	k	axial (D)	5.4	k			
												shear (A)	2.9	k shear (B)	3.6	k	shear (C)	7.2	k	shear (D)	7.2	k			
												, /		, ,			、,			· /					
		A	В	С	D																				
17		J	J	J								moment (E)	78.2	ft-k moment (F)	97.7	ft-k	moment (G)	195.5	ft-k	moment (H)	195.5	ft-k r	noment (J)	110.6 f	t-k
45												axial (E)	14.7	k axial (F)	0.0	k	axial (G)	0.0	k	axial (H)	25.8	k	.,,		
		E	F	G	н							shear (E)	10.4	k shear (F)	13.0	k	shear (G)	26.1	k	shear (H)	26.1	k			
																			_	. ,					
		E	F	G	Н																				
45		_ Р	P	P								moment (K)	162.3	ft-k moment (L)	202.8	ft-k	moment (M)	405.7	ft-k	moment (N)	405.7	ft-k r	moment (P)	240.5 f	t-k
67												axial (K)	32.1	k axial (L)	0.0	k	axial (M)	0.0	k	axial (N)	56.1	k	()		
		к	L	м	N							shear (K)	21.6	k shear (L)	27.0	k	shear (M)	54.1	k	shear (N)	54.1	k			
			_													<u> </u>									
		к	L	М	N																				
67		U	U	U								moment (O)	273.3	ft-k_moment (R)	341.6	ft-k	moment (S)	683.2	ft-k	moment (T)	683.2	ft-k r	moment (U)	435.6 f	t-k
89		-										axial (O)	58.1	k axial (R)	0.0	k	axial (S)	0.0	k	axial (T)	101.6	k	noment (0)	10010	
		0	R	S	т							shear (O)	36.4	k shear (R)	45.5	k	shear (S)	91.1	k	shear (T)	91.1	k			
		~										0.1.e.u. (Q)	50.1	K biled. (II)	1010		0.1001 (0)	5111		5.1641 (1)	5112				
		0	R	S	т																				
89		~ 7	7	7								moment (V)	410.5	ft-k_moment (W)	513.1	ft-k	moment (X)	1026.1	ft-k	moment (Y)	1026.1	ft-k r	moment (7)	683.8 f	t-k
110		_	_									axial (V)	91.2	k axial (W)	0.0	k	axial (X)	0.0	k	axial (Y)	159.5	k		00010	
		v	w	x	Y							shear (V)	54.7	k shear (W)	68.4	k	shear (X)	136.8	k	shear (Y)	136.8	k			
				ŀ																					
		v	W	x	Y																				
110		AH	AH	AH		moment (AA)	2.5 ft-k	moment (AB)	5.1	ft-k moment (AC)	5.1	ft-k moment (AD)	572.8	ft-k moment (AE)	716.1	ft-k	moment (AF)	1432.1	ft-k	moment (AG)	1432.1	ft-k r	noment (AH)	983.3 f	t-k
130						axial (AA)	0.2 k	axial (AB)	0.0	k axial (AC)	0.0	k axial (AD)	0.0	k axial (AE)	0.0	k	axial (AF)	0.0	k	axial (AG)	229.4	k l			
AA AB	AC	AD	AE	AF	AG	shear (AA)	19.1 k	shear (AB)	38.2	k shear (AC)	38.2	k shear (AD)	76.4	k shear (AE)	95.5	k	shear (AF)	190.9	k	shear (AG)	190.9	k			
						()	-	((-,		()	-	· ()			()		_	(-/					
AA AB	AC	AD	AE	AF	AG																				
130 AP AP	- AP	AP	AP	AP		moment (AI)	2.3 ft-k	moment (AJ)	4.5	ft-k moment (AK)	4.5	ft-k_moment (AL)	1148.2	ft-k_moment (AM)	1435.2	ft-k	moment (AN)	2870 5	ft-k	moment (AO)	2870.5	ft-k r	noment (AP)	1721.0 f	t-k
154						axial (AI)	115.1 k	axial (AJ)	0.0	k axial (AK)	0.0	k axial (AL)	0.0	k axial (AM)	0.0	k.	axial (AN)	0.0	k	axial (AO)	401.6	k			
AJ AJ	AK	AL	AM	AN	AO	shear (AI)	25.5 k	shear (AJ)	51.0	k shear (AK)	51.0	k shear (AL)	102.1	k shear (AM)	127.6	k	shear (AN)	255.2	k	shear (AO)	255.2	k			
							2010		01.0		01.0				127.0										
	АК	AI	AM	AN	AO																				
154 AX AY	ΔΧ	ΔΧ	ΔX	ΔΧ		moment (AO)	4.4 ft-k	moment (AR)	8.8	ft-k_moment (AS)	8.8	ft-k_moment (AT)	985 1	ft-k_moment (ALI)	1231 4	ft-k	moment (Δ\/)	2462.8	ft-k	moment (A\M/)	2462.8	ft-k r	noment (AX)	2133 3 f	t-k
176						axial (AO)	142.7 k	axial (AR)	0.0	k axial (AS)	0.0	k axial (AT)	0.0	k axial (AU)	0.0	k	axial (AV)	0.0	k	axial (AW)	497.8	k			
AO AR	AS	AT	AU	AV	AW	shear (AO)	32.8 k	shear (AR)	65.7	k shear (AS)	65.7	k shear (AT)	131 3	k shear (ALI)	164.2	k	shear (AV)	328 /	k	shear (AW)	328.4	k			
							JLIO K		03.7		03.7		131.3		107.2	~		520.4	<u>n</u>		520.4				

B.4 Clinic (N-S) 157mph

story force (k)		-		height (ft)																
18				22.5																
47	,			15																
70				15																
93				15																
115				15																
115				15																
130				15																
161				22.5																
184				15																
	30	30	30	width (ft)												_				
					sum															
dist. of forces	1	2	2	1	6															
	Gri	d N (N-S Cl	inic)																	
18					moment (A)	34.0	ft-k	moment (B)	67.9	ft-k	moment (C)	67.9	ft-k	moment (D)	34.0	ft-k				
	A	В	С	D	axial (A)	2.3	k	axial (B)	0.0	k	axial (C)	0.0	k	axial (D)	2.3	k				
					shear (A)	3.0	k	shear (B)	6.0	k	shear (C)	6.0	k	shear (D)	3.0	k				
	A	В	С	D																
18	J	J	J		moment (E)	81.8	ft-k	moment (F)	163.6	ft-k	moment (G)	163.6	ft-k	moment (H)	81.8	ft-k	moment (J)	115.8	ft-k	
47	,				axial (E)	7.7	k	axial (F)	0.0	k	axial (G)	0.0	k	axial (H)	7.7	k	.,			1
	E	F	G	н	shear (E)	10.9	k	shear (F)	21.8	k	shear (G)	21.8	k	shear (H)	10.9	k				í
	_				0.1001 (2)	10.5								onear (n)	1015					
	F	F	G	н																
17		I D	U D	11	momont (K)	160 7	ft k	momont (I)	220 /	ft k	momont (M)	220 /	ft k	momont (NI)	160.7	ft k	momont (D)	251 5	ft k	
4/	P .	r	P		moment (K)	109.7	IL-K		559.4	L-K		559.4	IL-K		109.7	L-K	moment (P)	251.5	IL-K	
/0	IZ IZ			NI	dxidi (K)	10.8	K	axiai (L)	0.0	ĸ		45.2	л к Ц.		10.8	K L.				
	К	L	IVI	N	snear (K)	22.6	К	snear (L)	45.3	к	snear (IVI)	45.3	К	snear (N)	22.6	к				I
	К	L	М	Ν																
70	U	U	U		moment (Q)	285.8	ft-k	moment (R)	571.7	ft-k	moment (S)	571.7	ft-k	moment (T)	285.8	ft-k	moment (U)	455.56	ft-k	
93					axial (Q)	30.4	k	axial (R)	0.0	k	axial (S)	0	k	axial (T)	30.4	k				
	Q	R	S	Т	shear (Q)	38.1	k	shear (R)	76.2	k	shear (S)	76.2	k	shear (T)	38.1	k				
	Q	R	S	Т																
93	z	z	z		moment (V)	429.3	ft-k	moment (W)	858.6	ft-k	moment (X)	858.6	ft-k	moment (Y)	429.3	ft-k	moment (Z)	715.14	ft-k	
115					axial (V)	47.7	k	axial (W)	0.0	k	axial (X)	0	k	axial (Y)	47.7	k				1
	v	w	x	Y	shear (V)	57.2	k	shear (W)	114.5	k	shear (X)	114.5	k	shear (Y)	57.2	k				1
										<u></u>						<u> </u>				,
							-									-			-	
	V	W	x	Y																
110	Λ F	 AF			moment (AA)	599.2	ft-k	moment (AP)	1102 2	ft₋レ	moment (AC)	1108 2	ft-k	moment (AD)	500.2	ft₋⊬	moment (AE)	1028 5	ft₋k	1
115		AL	AL		avial (AA)	68.6	k k	avial (AB)	0.0	k k	avial (AC)	1190.5	lk	avial (AD)	68.6	k k	moment (AE)	1020.5	TU-K	1
150	A A	۸D	<u>۸</u> ۲	۸D	choor (AA)	70.0	κ ν	choor (AD)	150.0	r k	choar (AC)	150.0			70.0	r L				1
	АА	AD	AL	AU	siledi (AA)	79.9	ĸ	siledi (AB)	129.9	ĸ	sileal (AC)	159.8	ĸ		79.9	ĸ				J
	AA	AB	AC	AD			a									a			6	
136	AJ	AJ	AJ		moment (AF)	1200.8	ft-k	moment (AG)	2401.7	ft-k	moment (AH)	2401.7	ft-k	moment (AI)	1200.8	ft-k	moment (AJ)	1800	ft-k	I
161					axial (AF)	120.0	k	axial (AG)	0.0	k	axial (AH)	0	k	axial (AI)	120.0	k				
	AF	AG	AH	AI	shear (AF)	106.7	k	shear (AG)	213.5	k	shear (AH)	213.5	k	shear (AI)	106.7	k				<u> </u>
	AF	AG	AH	AI																
161	AO	AO	AO		moment (AK)	1030.3	ft-k	moment (AL)	2060.6	ft-k	moment (AM)	2060.6	ft-k	moment (AN)	1030.3	ft-k	moment (AO)	2231.1	ft-k	
184		1	1		axial (AK)	148.7	k	axial (AL)	0.0	k	axial (AM)	0	k	axial (AN)	148.7	k	, -,			í
101	АК	AL	AM	AN	shear (AK)	137.4	k	shear (AL)	274.7	k	shear (AM)	274.7	k	shear (AN)	137.4	k				1
						207.7									207.4					,
													1.1				1			

B.5 Clinic (E-W) 157mph

1 / -		-																							
story force (k)			height (ft)																						
41			22.5																						
107			15																						
10/																									
158			15																						
209			15																						
258			15																						
306			15																						
300																									
363			22.5																						
414			15																						
30 30 30	30	30	30 30 30 width (ft)																						
			sum																						
dist ofference 0.9 2 2	2	,	1 0.2 0.1 10.1																						
	2	ζ.	1 0.2 0.1 10.1																						
	Gric	10 (E-W Cli	nic)																						
41								momont (A)	00.9 ft k moment	(D) 00 0	ft k momont (C)	00.9 f	t k moment (D)) 00 9 ft k	momont (E)	15.1 f	t k momont (E)	45.4 ft	· k						
41	-	_						moment (A)	50.0 It-K III0IIIEIIL	50.0		50.0 1) 90.0 IL-K		43.4	t-k inoment (F)	43.4 10	.~~						
A B	С	D	F F					axial (A)	6.1 k axial (B)	0.0	k axial (C)	0.0	(axial (D)	0.0 k	axial (E)	0.0 k	axial (F)	3.0 k	_						
								shear (A)	8.1 k shear (B)	8.1	k shear (C)	8.1 k	shear (D)	8.1 k	shear (E)	4.0 k	shear (F)	4.0 k							
ΔΒ	C	D I	E E																						
41 N N	- NI	- N	- · · · · · · · · · · · · · · · · · · ·					moment (C)	210 7 ft le mom-st	U) 110 7	ft k moment (I)	210 7 4	t k moment (1/)	1 210 7 41	momont (1)	100.2	t k moment / M	100.2 4	k moment (N)	200 5 4 1					
41 N N	N	N	N					moment (G)	218.7 It-k moment	пј 218.7	н-к moment (J)	218.7 1	t-к moment (К)) 218./ TT-K	moment (L)	109.3	t-к moment (M)	109.3 ft-	-K moment (N)	309.5 Tt-K					
107								axial (G)	41.3 k axial (H)	0.0	k axial (J)	0.0 k	caxial (K)	0.0 k	axial (L)	0.0 k	axial (M)	30.9 k							
G H	J	K I	M					shear (G)	29.2 k shear (H)	29.2	k shear (J)	29.2	shear (K)	29.2 k	shear (L)	14.6 k	shear (M)	14.6 k							
P G H	J	K	M																						
107 X X X	Х	Х	X	moment (P)	181.5 ft-k mo	ment (Q) 18	81.5 ft-	-k moment (R)	453.7 ft-k moment	S) 453.7	ft-k moment (T)	453.7 f	t-k moment (U)) 453.7 ft-k	moment (V)	226.9 f	t-k moment (W)	226.9 ft-	-k moment (X)	363.0 ft-k					
158				axial (P)	12.1 k axi	al (O) 4	18.4 k	axial (R)	0.0 k axial (S)	0.0	k axial (T)	0.0	axial (U)	0.0 k	axial (V)	0.0 k	axial (W)	46.6 k							
	т		I WI	choor (D)	24.2 k cho	$r(\alpha) = \frac{1}{2}$	017 k	choor (P)	60.5 k choar (S)	60.5	k choar(T)	60.5	(choar (U)	60.5 k	choor (V)	20.2 4	choar (W)	20.2			-				
<u> </u>	1	0		Siledi (F)	24.2 K 5110	ai (Q) 2	.4.Z N	sileai (N)	UU.J K Sileal (J)	00.5	K Siledi (1)	00.3	sileal (0)	00.J K	Sileal (V)	30.2 N	siledi (vv)	30.2 K							
Q R S	Т	U V	V W																						
	٨E	AE			mo	mont (V) 20	05.6 ft	k momont (7)	764.1 ft k moment	AA) 764.1	ft k momont (AP) 764.1 f	t k moment (A)	C) 764 1 ft k	moment (AD)) 202 1 f	t k momont (AE) 202 1 ft	k momont (AE)	1071 ft k					
	Ar	Ar					05.0 11	-K IIIOIIIEIIL (2)	704.1 It-K III0IIIEIIU	AA) 704.1	IL-K INUMENC (AD	0 704.1 1		C) 704.1 II-K		0.0		/ 302.1 10	-K IIIOIIIEIII (AF)	407.1 IL-N					
209					axi	al (Y) 6	5.0 K	axial (2)	0.0 k axial (AA)	0.0	k axial (AB)	0.0	(axial (AC)	0.0 k	axial (AD)	0.0 k	axial (AE)	/3.1 K			_				
Y Z AA	AB	AC A	AD AE		she	ear (Y) 4	10.8 k	shear (Z)	101.9 k shear (AA	.) 101.9	k shear (AB)	101.9	shear (AC)	101.9 k	shear (AD)	50.9 k	shear (AE)	50.9 k							
V 7 AA	4.0	4.0																							
f Z AA	AB	AL I																							
209 AN AN AN	AN	AN	AN		mo	ment (AG) 45	59.1 ft-	-k moment (Al	H) 1147.6 ft-k moment	AI) 1147.6	ft-k moment (AJ)) 1147.6 t	t-k moment (Al	K) 1147.6 ft-k	moment (AL)	573.8 t	t-k moment (AN	∧) 573.8 ft•	-k moment (AN)	764.7 ft-k					
258					axi	al (AG) 10	02.0 k	axial (AH)	0.0 k axial (AI)	0.0	k axial (AJ)	0.0 k	axial (AK)	0.0 k	axial (AL)	0.0 k	axial (AM)	114.7 k							
AG AH AI	AJ	AK /	AL AM		she	ear (AG) 6	51.2 k	shear (AH)	153.0 k shear (AI)	153.0	k shear (AJ)	153.0	shear (AK)	153.0 k	shear (AL)	76.5 k	shear (AM)	76.5 k							
								()			(./		()		()		()								
AG AH AI	AJ	AK /	AL AM																						
258 AV AV AV	AV	AV	AV		mo	ment (AO) 64	40.7 ft-	-k moment (Af) 1601.7 ft-k moment	AQ) 1601.7	ft-k moment (AR	l) 1601.7 f	t-k moment (AS	S) 1601.7 ft-k	moment (AT)	800.9 f	t-k moment (AL	J) 800.9 ft-	-k moment (AV)	1099.8 ft-k					
306					axi	al (AO) 14	46.6 k	axial (AP)	0.0 k axial (AO)	0.0	k axial (AR)	0.0 k	axial (AS)	0.0 k	axial (AT)	0.0 k	axial (AU)	165.0 k							
AO AR AO	٨D	٨ς			cho	ar(AO) 9	25 1 1	choor (AD)	212.6 k choor/AC	1) 212.6	k choor (AP)	212.6	(choor (AS)	212.6 k	choor (AT)	106.9 1/	choor (ALI)	106.9			_				
AU AF AQ	An	AS I			5110		5J.4 N	siledi (Ar)	213.0 K Sileal (AC	y 215.0	K Siledi (AK)	213.0	Sileal (AS)	213.0 K	sileal (AT)	100.0 K	Sileal (AU)	100.0 K	-						
AO AP AQ	AR	AS	AT AU																						
306 RD RD RD	BD	RD	BD		mo	ment (AW) 12	084 1 ft-	-k moment (A)	() 3210.1 ft-k moment	ΔV) 3210.1	ft-k moment (A7	1 3210.1 f	t-k moment (B	A) 3210.1 ft-k	moment (BB)	1605 1 f	t-k moment (BC	1 1605 1 ft.	-k moment (BD)	1974 8 ft-k					
262 20 00 00	50							avial (AV)		, 5210.1		0.0 1	(avial (DA)	0.0 1/	avial (nn)	0.0		200 7		202110 IU K					
303					dXI	di (AW) Z:	50.0 K	dxidi (AX)	U.U K dXIdI (AY)	0.0	K dXIdI (AZ)	0.0	axiai (BA)	U.U K	dxidi (BB)	U.U K	axidi (BC)	288.7 K			_				
AW AX AY	AZ	BA	BB BC		she	ear (AW) 11	14.1 k	shear (AX)	285.3 k shear (AY) 285.3	k shear (AZ)	285.3	shear (BA)	285.3 k	shear (BB)	142.7 k	shear (BC)	142.7 k							
	۸7	RA														+									
	AL	UM				100	04 - 1	1 . /=:	1) 2754 2 (1)	011 0774	(i i i i i i i i i i i i i i i i i i i	0774.0	N	W 275 (2 ()	. 18-1	40		1) 4077 4 4	1	407.7	. (8-2)	407 - 41	. (88)	2205 - K. ·	
зоз ву ву вр	Bh	Rh	ВК		mo	iment (BG) 11	101.7 ft-	-к moment (Bł	1) 2/54.2 ITT-k moment	ы) 2/54.2	тт-к moment (BJ)	2/54.2 1	т-к moment (Bł	kj 2/54.2 ft-k	moment (BL)	13//.1 †	t-к moment (BN	// 13//.1 ft-	-к moment (BN)	137.7 ft-k	moment (BO)	137.7 ft-k	Imoment (BP)	2385./ tt-k	
414					axi	al (BG) 33	18.1 k	axial (BH)	0.0 k axial (BI)	0.0	k axial (BJ)	0.0 k	axial (BK)	0.0 k	axial (BL)	0.0 k	axial (BM)	0.0 k	axial (BN)	0.0 k	axial (BO)	168.2 k			
BG BH BI	BJ	BK	BL BM BN BO		she	ear (BG) 14	46.9 k	shear (BH)	367.2 k shear (BI)	367.2	k shear (BJ)	367.2	shear (BK)	367.2 k	shear (BL)	183.6 k	shear (BM)	183.6 k	shear (BN)	18.4 k	shear (BO)	18.4 k			
															,										

B.6 Hospital (N-S) 110mph

story force (k)										height (ft)																											
1	2										22.5																											
3	1										15																				_							
4	5										15																											
-	0										15																				_							
7	4						-	-			15																				_							
	4				_						15																				_							
8	8				_						15																											
10	4									_	22.5																				_							
11	9	1									15																				_							
	30	30	30	30	30	30	30	30	30	30	80 width (ft)																											
											sum																											
dist. of forces	1	2	2	2	2	2	2	1.8	1	0.1	15.9																											
				G	Grid E (N-S	Hospital)																																
1	2										moment (A)	8.2 f	t-k moment (B) 16.5	ft-k mom	ent (C) 1	16.5 ft-k	k moment (D)	16.5	t-k moment (E)	16.5	t-k moment (F)	16.5	ft-k moment (G)	16.5 ft-k	(moment (H)	14.8	it-k										
	Δ	B	c	D	F	F	G	н			axial (A)	05	(axial (B)	00	k axial	(0)	0.0 k	axial (D)	0.0	(axial (F)	0.0	(axial (F)	0.0	k axial (G)	00 k	axial (H)	10	· · · ·			_							
		5			-		J				shear (A)	0.5	(shear (B)	1.5	k shear	·(c)	15 k	shear (D)	1.5	(shear (F)	1.5	c shear (F)	1.5	k shear(G)	15 k	shear (H)	13	()										
											Sicul (A)	0.7	(Silear (D)	1.5	K SHCU	(0)	1.5 K	Silical (D)	1.5		1.5		1.5	in Shear (G)	1.5 K	Silear (II)	1.5											
	٨	D	c	D	c		c	u																														
4		D			E	r U	0	п				10.0	(k)	20.7	A 1		07 41	L	20.7	(h)	20.7	(D)	20.7	(t)	20.7 61	· · · · · · · · · · · · (D)	25.0	the second (C)	10.0	64	20	6 I	ant (11)	0.4 4.1	a			
1	2 0	U	U	U	0	U	U	-		-	moment (J)	19.9	t-K moment (K)	39.7	пт-к тот	ent (L) 3	39.7 TT-K		39.7	t-k moment (N)	39.7	t-k moment (P)	39.7	rt-k moment (U)	39.7 IT-1	(moment (R)	35.8	t-k moment (S)	19.9	TT-K moment (I	2.0		ent (U) 2	28.1 TT-K	4			
3	1					-	-	-	-	_	axiai (J)	3./	(axial (K)	0.0	k axiai	(L) (0.0 K	axiai (M)	0.0		0.0	c axial (P)	0.0	k axial (Q)	0.0 K	axial (K)	0.0	axial (S)	0.0	k axial (1)	0.1	K			4			
	J	K	L	М	N	Р	Q	R	S	T	shear (J)	2.6	k shear (K)	5.3	k shear	·(L) !	5.3 k	shear (M)	5.3	shear (N)	5.3	shear (P)	5.3	k shear (Q)	5.3 k	shear (R)	4.8	shear (S)	2.6	k shear (T)	0.3	k			4			
	J	К	L	М	Ν	Р	Q	R	S	Т																												
3	1 AF	AF	AF	AF	AF	AF	AF	AF	AF		moment (V)	41.3 f	ft-k moment (W	/) 82.5	ft-k mom	ent (X) 8	32.5 ft-k	k moment (Y)	82.5	t-k moment (Z)	82.5	t-k moment (AA)	82.5	ft-k moment (AB)	82.5 ft-k	(moment (AC)	74.3	t-k moment (AD)	41.3	ft-k moment (A	E) 4.1	ft-k mom	ent (AF) 4	45.0 ft-k	1			
4	5										axial (V)	7.1	k axial (W)	0.0	k axial	(X)	0.0 k	axial (Y)	0.0	axial (Z)	0.0	caxial (AA)	0.0	k axial (AB)	0.0 k	axial (AC)	0.0	axial (AD)	0.0	k axial (AE)	3.4	k						
	V	W	Х	Y	Z	AA	AB	AC	AD	AE	shear (V)	5.5	k shear (W)	11.0	k shear	·(X) 1	11.0 k	shear (Y)	11.0	shear (Z)	11.0	shear (AA)	11.0	k shear (AB)	11.0 k	shear (AC)	9.9	shear (AD)	5.5	k shear (AE)	0.6	k						
	V	W	Х	Y	Z	AA	AB	AC	AD	AE																												
4	5 AO	AO	AO	AO) _ AC) AO	AO	AO	AO		moment (AG)	69.5 f	t-k moment (A	H) 139.0	ft-k mom	ent (AI) 1	39.0 ft-k	k moment (AI)	139.0	t-k moment (AK)	139.0	t-k moment (AL)	139.0	ft-k moment (AM)	139.0 ft-k	moment (AN	125.1	t-k moment (AO)	69.5	ft-k moment (A	P) 7.0	ft-k mom	ent (AO)	76.6 ft-k	4			
6	0										axial (AG)	12.5	(axial (AH)	00	k axial	(AI) (0.0 k	axial (AI)	0.0	(axial (AK)	0.0	(axial (AL)	0.0	k axial (AM)	0.0 k	axial (AN)	00	(axial (AO)	0.0	k axial (AP)	5.8	k						
	۰ ۸G	٨H	AL	Δ1	٨ĸ	A1	A.M.	AN	10	٨D	shear (AG)	0.2 1	(chear (AH)	18 5	k choor	·(AI) 1	185 4	chear (Al)	18.5	c chear (AK)	18.5	c shear (AL)	18.5	k chear(AM)	18.5 k	chear (AN)	16.7	(shear (AO)	0.0	k choor(AD)	0.0	k			ł			
	AU	A 11		Ŋ		~L		7.11	πu	AI.	sileal (AO)	J.J		10.5	K SIICOI	(^) 1	10.J K	Sileal (AS)	10.5		10.5		10.5		10.J K	Siledi (AN)	10.7	Sileal (AO)	5.5		0.5	ĸ			4			
	4.0	A 11			A 1/			4.81	40	4.0																												
	AG	АП	AI	AJ		AL	AIVI	AN	AU	AP		404.4		c) 200.0	0.1		00.0		200.0		200.0		200.0	() I (A)()	200.0 (1.1	1 (4) (400.0		404.4	(i i i i i i i i i i i i i i i i i i i	10.4	0.1	1 (00)	46.0 (1)				
6	N RR	RR	RR	BB	BE	D BR	RR	RR	RR	-	moment (AR)	104.4	IL-K moment (A	5/ 208.8	тс-к тот	ent (AT) 2	Uð.ð Tt-k	K Informent (AU)	1 208.8 1	L-K moment (AV)	208.8	t-K moment (AW)	208.8	IL-K moment (AX)	208.8 It-k	cinoment (AY)	188.0	t-к moment (AZ)	104.4	IL-K moment (B	A) 10.4	тс-к тот	ent (BB) 1	.10.9 TT-K	4			
7	4						1			-	axial (AR)	19.4	(axial (AS)	0.0	k axial	(AI) (U.U K	axiai (AU)	0.0	(axiai (AV)	0.0	(axiai (AW)	0.0	k axial (AX)	0.0 k	axiai (AY)	0.0	axiai (AZ)	0.0	k axial (BA)	9.0	K			4			
	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	shear (AR)	13.9	shear (AS)	27.8	k shear	·(AT) 2	27.8 k	shear (AU)	27.8	shear (AV)	27.8	shear (AW)	27.8	k shear (AX)	27.8 k	shear (AY)	25.1	shear (AZ)	13.9	k shear (BA)	1.4	k			4			
															_																							
	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA																				_								
7	4 BM	BM	BM	BM	1 BN	1 BM	BM	BM	BM		moment (BC)	145.8 f	ft-k moment (Bl	D) 291.5	ft-k mom	ent (BE) 2	91.5 ft-k	k moment (BF)	291.5	t-k moment (BG)	291.5	t-k moment (BH)	291.5	ft-k moment (BI)	291.5 ft-k	(moment (BJ)	262.4	t-k moment (BK)	145.8	ft-k moment (B	L) 14.6	ft-k mom	ent (BM) 1	65.1 ft-k				
8	8										axial (BC)	27.7	k axial (BD)	0.0	k axial	(BE) (0.0 k	axial (BF)	0.0	axial (BG)	0.0	<a>axial (BH)	0.0	k axial (BI)	0.0 k	axial (BJ)	0.0	axial (BK)	0.0	k axial (BL)	12.7	k						
	BC	BD	BE	BF	BG	BH	BI	BJ	BK	BL	shear (BC)	19.4	shear (BD)	38.9	k shear	(BE) 3	38.9 k	shear (BF)	38.9	shear (BG)	38.9	shear (BH)	38.9	k shear (BI)	38.9 k	shear (BJ)	35.0	shear (BK)	19.4	k shear (BL)	1.9	k						
	BC	BD	BE	BF	BG	BH	BI	BJ	BK	BL																												
8	8 BX	BX	BX	BX	BX	BX	BX	BX	BX		moment (BN)	292.1 f	ft-k moment (B	0) 584.3	ft-k mom	ent (BP) 5	84.3 ft-k	k moment (BQ)	584.3	t-k moment (BR)	584.3	t-k moment (BS)	584.3	ft-k moment (BT)	584.3 ft-k	(moment (BU)	525.8	t-k moment (BV)	292.1	ft-k moment (B	W) 29.2	ft-k mom	ent (BX) 3	19.8 ft-k	1			
10	4		1								axial (BN)	50.5	(axial (BO)	0.0	k axial	(BP) (0.0 k	axial (BO)	0.0	(axial (BR)	0.0	(axial (BS)	0.0	k axial (BT)	0.0 k	axial (BU)	0.0	axial (BV)	0.0	k axial (BW)	24.2	k			1			
	BN	BO	BP	BO	BR	BS	BT	BU	BV	BW	shear (BN)	26.0	shear (BO)	51.9	k shear	(BP) 5	51.9 k	shear (BO)	51.9	shear (BR)	51.9	(shear (BS)	51.9	k shear (BT)	51.9 k	shear (BU)	46.7	shear (BV)	26.0	k shear (BW)	2.6	k			1	1		
		-	<u> </u>					-							2.1.0 01	. / 3				, and any																		
										-																												
	DN	PO	DD	DO.	DD	DC	DT	DII	D\/	D\A/																										+'		
40		00	Dr n	DQ C	DK CI	00			DV	DVV	memont (DV)	250.0	t k moment /P	7) E01 2	ftkmore	ont (CA)	012 61	(moment (CD)	E01 2	t k moment (co)	501.2	t k moment (CD)	E01 0	ft k moment (CE)	501 2 4	(momont (CF)	101 2	t k moment (CC)	250.0	ft k moment /C	⊔\ <u>२</u> г 1	ftkmar	iont (CI))5 1 (t. l.	momont /c	1) EAD 0	ft k	
10	+ U	u	u u	u	ü	ů	u u	u	u	+	moment (BY)	230.0		2/ 301.3			00.0	avial (CD)	0.0		501.3		0.0		0.0 It-I	avial (CF)	431.2	(avial (CC)	250.0		111 23.1			1.7 IIK		1 342.8	11-K	
11	Э DV	07	C 1	6 7	~~	<u>~</u>	<u>сг</u>	65	<u> </u>	C 11	axiai (BY)	37.9	axial (BZ)	0.0	k axial		U.U K	axiai (CB)	0.0		0.0		0.0		0.0 K	dXIal (CF)	0.0		0.0	k axial (CH)	0.0	K axial		1.7 K	<u> </u>	'		
	RÅ	BZ	CA	CB	CC	CD	CE	CF	CG	ĊH	CI shear (BY)	33.4	shear (BZ)	66.8	k shear	(CA) 6	ob.8 k	shear (CB)	66.8	shear (CC)	66.8	shear (CD)	66.8	K shear (CE)	66.8 k	shear (CF)	60.2	shear (CG)	33.4	к shear (CH)	3.3	k shear	(CI)	3.3 k	4	'		

B.7 Hospital (E-W) 110mph

(forco (k)	,	1-	1												1											
TOILE (K)						height (f	t)																			
8						22.5																				
2						15																			_	
22						15					_						_									_
33						15																				
44						15																				
54						15																				
54						15																				
64						15					_															_
76						22.5																				
86						15																				
20	20	20	20	20	20	width (f	+)				-														_	
	30	30	30	30	30	width (i	()																			
						sum																				
of forces 0.2	0.4	0.4	0.8	1	2	4.	.8																			
		Cuid																							_	
		Grid	19 (E-W Ho	spital)																						
8														m	noment (A)	15.9	ft-k	moment (B)	19.8	ft-k_moment (C)	39.6	ft-k_moment (D)	39.6	ft-k		
			٨	D	C	D									vial (A)	1 1	k	avial (B)	0.0		0.0		26	k	_	
			A	в	L	U								d		1.1	ĸ	axial (B)	0.0	K axial (C)	0.0	K dxidi (D)	2.0	K .		
														sl	hear (A)	1.4	k	shear (B)	1.8	k shear (C)	3.5	k shear (D)	3.5	k		
]									
			٨	B	C	D					-															
			<u> </u>								-			-	. (5)	20.2	c	. /=>	47.0		05 -	6 1	05.5	0.1		C 1
8			1	J	J	1								m	noment (E)	38.3	tt-k	moment (F)	47.9	IT-k moment (G)	95.7	TT-K moment (H)	95.7	rt-k moment (J)	54.1	ft-k
22			1											a	xial (E)	7.2	k	axial (F)	0.0	k axial (G)	0.0	k axial (H)	12.6	k		
			F	F	G	н								cl	hear (F)	5.1	k	shear (F)	64	k shear(G)	12.8	k shear (H)	12.8	k		
			-											31		5.1			0.7		12.0	. Shear (11)	12.0	<u></u>		
											_															_
			E	F	G	Н																				
22			- n		- n										omont (I/)	70 5	ft le	momort (I)	00.4	ft k moment (M)	109.0	ft k moment (NI)	109.0	ft k moment (D)	117.0	f+ I-
22			Р	Р	Р						_			m	noment (K)	79.5	ττ-κ	moment (L)	99.4	ft-к moment (IVI)	198.9	тт-к moment (N)	198.9	ft-k moment (P)	117.8	TT-K
33														a	xial (K)	15.7	k	axial (L)	0.0	k axial (M)	0.0	k axial (N)	27.5	k		
			К	L	М	N								sl	hear (K)	10.6	k	shear (L)	13.3	k shear (M)	26.5	k shear (N)	26.5	k		
															, γ					, , ,		. ,				_
																										_
			к	L	м	N																				
22														~	noment(0)	124.0	ft k	momont (B)	167 E	ft k momont (S)	224.0	ft k moment (T)	224.0	ft k momont (U)	212 E	f+ k
35			0	0	0						_				ioment (Q)	154.0	IL-K	moment (K)	107.5	IL-K INDITIETIL (S)	554.9	It-K moment (1)	554.9	It-K moment (0)	215.5	TL-K
44														a	xial (Q)	28.5	k	axial (R)	0.0	k axial (S)	0.0	k axial (T)	49.8	k		
			Q	R	S	т								sl	hear (Q)	17.9	k	shear (R)	22.3	k shear (S)	44.7	k shear (T)	44.7	k		
			-												V 4											
			Q	R	S	Т																				
44			7	7	7									m	noment (V)	201.3	ft-k	moment (W)	251.6	ft-k_moment (X)	503.1	ft-k_moment (Y)	503.1	ft-k_moment (7)	335.2	ft-k
			-	-	-						_				: 100	201.5	10 10	: 1 (14)	201.0		0.0		70.2		333.2	
54														a	xial (V)	44.7	к	axial (W)	0.0	k axial (X)	0.0	k axial (Y)	/8.2	к	_	
			V	W	х	Y								sl	hear (V)	26.8	k	shear (W)	33.5	k shear (X)	67.1	k shear (Y)	67.1	k		
					-																					
the second se					-																					
						Y																				
			v	W	Х					25	I.c. 1	. ()				200.0	ft L	momont (AE)	0			ft-k moment (AG)	702.2			ft-k
54			V AH	W AH	X AH		moment (AA)	1.2 ft-	k moment (AB)	2.5	tt-k	moment (AC)	2.5	ft-k m	ioment (AD)	280.9	IL-K	moment (AL)	351.1	ft-k moment (AF)	702.3	It-K Inoment (AO)	/02.3	TT-K moment (AH)) 482.2	
54			V AH	W AH	X AH		moment (AA)	1.2 ft-	k moment (AB)	2.5	ft-k k	moment (AC)	2.5	ft-k m	vial (AD)	280.9	lt-к	axial (AF)	351.1	ft-k moment (AF)	702.3	k axial (AG)	/02.3	k moment (AH) 482.2	
54 64		46	V AH	W AH	X AH		moment (AA) axial (AA)	1.2 ft- 0.1 k	k moment (AB) axial (AB)	0.0	ft-k k	axial (AC)	2.5	ft-k m k az	xial (AD)	280.9	k	axial (AE)	351.1 0.0	ft-k moment (AF) k axial (AF)	702.3 0.0	k axial (AG)	702.3	k) 482.2	
54 64 AA	AB	AC	V AH AD	W AH AE	X AH AF	AG	moment (AA) axial (AA) shear (AA)	1.2 ft- 0.1 k 9.4 k	k moment (AB) axial (AB) shear (AB)	0.0 18.7	ft-k k k	axial (AC) shear (AC)	2.5 0.0 18.7	ft-k m k az k sl	xial (AD) hear (AD)	0.0 37.5	k k	axial (AE) shear (AE)	351.1 0.0 46.8	ft-k moment (AF) k axial (AF) k shear (AF)	702.3 0.0 93.6	k axial (AG) k shear (AG)	702.3 112.5 93.6	k k) 482.2	
54 64 AA	AB	AC	V AH AD	W AH AE	X AH AF	AG	moment (AA) axial (AA) shear (AA)	1.2 ft- 0.1 k 9.4 k	k moment (AB) axial (AB) shear (AB)	0.0 18.7	ft-k k k	moment (AC) axial (AC) shear (AC)	2.5 0.0 18.7	ft-k m k a: k sl	xial (AD) hear (AD)	0.0 37.5	k k	axial (AE) shear (AE)	351.1 0.0 46.8	ft-k moment (AF) k axial (AF) k shear (AF)	702.3 0.0 93.6	k axial (AG) k shear (AG)	702.3 112.5 93.6	k) 482.2	
54 64 AA	AB	AC	V AH AD	W AH AE	X AH AF	AG	moment (AA) axial (AA) shear (AA)	1.2 ft- 0.1 k 9.4 k	k moment (AB) axial (AB) shear (AB)	0.0 18.7	ft-k k k	moment (AC) axial (AC) shear (AC)	2.5 0.0 18.7	ft-k m k az k sl	noment (AD) xial (AD) hear (AD)	0.0 37.5	k k	axial (AE) shear (AE)	351.1 0.0 46.8	ft-k moment (AF) k axial (AF) k shear (AF)	702.3 0.0 93.6	k axial (AG) k shear (AG)	702.3 112.5 93.6	k) 482.2	
54 64 AA	AB	AC	V AH AD	W AH AE	X AH AF	AG	moment (AA) axial (AA) shear (AA)	1.2 ft- 0.1 k 9.4 k	k moment (AB) axial (AB) shear (AB)	0.0 18.7	ft-k k k	moment (AC) axial (AC) shear (AC)	2.5 0.0 18.7	ft-k m k a: k sl	ioment (AD) xial (AD) hear (AD)	0.0 37.5	k k	axial (AE) shear (AE)	351.1 0.0 46.8	ft-k moment (AF) k axial (AF) k shear (AF)	702.3 0.0 93.6	k axial (AG) k shear (AG)	702.3 112.5 93.6	k) 482.2	
54 64 AA	AB	AC AC	V AH AD AD	W AH AE AE	X AH AF AF	AG	moment (AA) axial (AA) shear (AA)	1.2 ft- 0.1 k 9.4 k	k moment (AB) axial (AB) shear (AB)	0.0 18.7	tt-k k k	moment (AC) axial (AC) shear (AC)	2.5 0.0 18.7	ft-k m k ax k sl	ioment (AD) xial (AD) hear (AD)	0.0	k k	axial (AE) shear (AE)	351.1 0.0 46.8	ft-k moment (AF) k axial (AF) k shear (AF)	702.3 0.0 93.6	k axial (AG) k shear (AG)	702.3 112.5 93.6	k) 482.2	
54 64 AA AA 64 AP	AB AB AB	AC AC AP	V AH AD AD AD	W AH AE AE AE AE	X AH AF AF AF	AG	moment (AA) axial (AA) shear (AA) moment (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft-	k moment (AB) axial (AB) shear (AB) k moment (AJ)	2.5 0.0 18.7 2.2	ft-k k ft-k	moment (AC) axial (AC) shear (AC) moment (AK)	2.5 0.0 18.7 2.2	ft-k m k ax k sl	noment (AD) hear (AD) noment (AL)	280.9 0.0 37.5 563.0	ft-k	axial (AE) shear (AE) moment (AM)	351.1 0.0 46.8 703.8	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN)	702.3 0.0 93.6 1407.5	k axial (AG) k shear (AG) ft-k moment (AO)	702.3 112.5 93.6 1407.5	rt-k moment (AH k k ft-k moment (AP)) 482.2	ft-k
54 64 AA AA 64 AP 76	AB AB AP	AC AC AC	V AH AD AD AD AP	W AH AE AE AE AE	X AH AF AF AF	AG	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ)	2.5 0.0 18.7 2.2 0.0	ft-k k ft-k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK)	2.5 0.0 18.7 2.2 0.0	ft-k m k az k sl	noment (AD) hear (AD) noment (AL) xial (AL)	280.9 0.0 37.5 563.0 0.0	k k ft-k k	moment (AE) shear (AE) moment (AM) axial (AM)	351.1 0.0 46.8 703.8 0.0	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN)	702.3 0.0 93.6 1407.5 0.0	ft-k moment (AO) k axial (AG) ft-k moment (AO) k axial (AO)	702.3 112.5 93.6 1407.5 196.9	ft-k moment (AH) 482.2	ft-k
54 64 AA 64 AP 76	AB AB AP	AC AC AP	V AH AD AD AP	W AH AE AE AE AP	X AH AF AF AP	AG	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ)	2.5 0.0 18.7 2.2 0.0	ft-k k ft-k ft-k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK)	2.5 0.0 18.7 2.2 0.0	ft-k m k a: k sl	noment (AD) hear (AD) noment (AL) xial (AL)	280.9 0.0 37.5 563.0 0.0	ft-k k	moment (AE) axial (AE) shear (AE) moment (AM) axial (AM)	351.1 0.0 46.8 703.8 0.0	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN)	702.3 0.0 93.6 1407.5 0.0	ft-k moment (AG) k axial (AG) ft-k moment (AO) k axial (AO)	702.3 112.5 93.6 1407.5 196.9	ft-k moment (AH) 482.2	ft-k
54 64 AA AA 64 AP 76 AI	AB AB AP AJ	AC AC AP AK	V AH AD AD AD AP AL	W AH AE AE AE AE AP	X AF AF AF AF AP	AG AG AG	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k k k ft-k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k m k a: k sl ft-k m k a: k sl	noment (AD) hear (AD) noment (AL) xial (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0	ft-k k ft-k k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM)	351.1 0.0 46.8 703.8 0.0 62.6	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN)	702.3 0.0 93.6 1407.5 0.0 125.1	ft-k moment (AO) k axial (AG) ft-k moment (AO) k axial (AO) k shear (AO)	702.3 112.5 93.6 1407.5 196.9 125.1	ft-k moment (AH k ft-k moment (AP) k k) 482.2	ft-k
54 64 AA AA 64 AP 76 AI	AB AB AP AJ	AC AC AP AK	V AH AD AD AD AD AD AD	AH AE AE AE AE AM	X AH AF AF AP AN	AG AG AG	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k k ft-k k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k m k az k sl ft-k m k az k sl	noment (AD) hear (AD) homent (AL) xial (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0	ft-k k ft-k k k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM)	351.1 0.0 46.8 703.8 0.0 62.6	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN)	702.3 0.0 93.6 1407.5 0.0 125.1	ft-k moment (AO) k shear (AG) ft-k moment (AO) k axial (AO) k shear (AO)	702.3 112.5 93.6 1407.5 196.9 125.1	ft-k moment (AH k k ft-k moment (AP) k k) 482.2	ft-k
54 64 AA AA 64 AP 76 AI	AB AB AP AJ	AC AC AP AK	V AH AD AD AD AD AD	AH AE AE AE AP AM	X AH AF AF AP AN	AG AG AG	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ)	2.3 0.0 18.7 2.2 0.0 25.0	ft-k k ft-k k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k m k az k sl	noment (AD) hear (AD) noment (AL) xial (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0	ft-k k ft-k k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM)	351.1 0.0 46.8 703.8 0.0 62.6	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN)	702.3 0.0 93.6 1407.5 0.0 125.1	ft-k moment (AO) k shear (AG) ft-k moment (AO) k axial (AO) k shear (AO)	702.3 112.5 93.6 1407.5 196.9 125.1	ft-k moment (AH k ft-k moment (AP) k k) 482.2	ft-k
54 64 AA 64 AP 76 Al	AB AB AP AJ	AC AC AP AK	V AH AD AD AD AL	W AH AE AE AP AM	X AH AF AF AP AN	AG AG AO	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft 0.1 k 9.4 k 1.1 ft 56.4 k 12.5 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ)	2.3 0.0 18.7 2.2 0.0 25.0	ft-k k ft-k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k m k a: k sl	noment (AD) hear (AD) noment (AL) xial (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0	ft-k k k k ft-k k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM)	351.1 0.0 46.8 703.8 0.0 62.6	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN)	702.3 0.0 93.6 1407.5 0.0 125.1	ft-k moment (AO) k shear (AG) ft-k axial (AO) k axial (AO) k shear (AO)	702.3 112.5 93.6 1407.5 196.9 125.1	ft-k moment (AH k ft-k moment (AP) k k) 482.2	ft-k
54 64 AA 64 AA 64 AP 76 AI	AB AB AP AJ AJ	AC AC AP AK	V AH AD AD AD AD AL AL	W AH AE AE AE AM AM	X AH AF AF AN AN	AG AG AO	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ)	2.3 0.0 18.7 2.2 0.0 25.0	ft-k k ft-k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK)	2.5 0.0 18.7 2.2 0.0 25.0	ft-k m k a: k sl	noment (AD) hear (AD) homent (AL) xial (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0	ft-k k k ft-k k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM)	351.1 0.0 46.8 703.8 0.0 62.6	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN)	702.3 0.0 93.6 1407.5 0.0 125.1	ft-k moment (AO) k shear (AG) ft-k moment (AO) k axial (AO) k shear (AO)	702.3 112.5 93.6 1407.5 196.9 125.1	ft-k moment (AH k ft-k moment (AP) k k) 482.2	ft-k
54 64 AA 64 AA 64 AP 76 AI AI 76 AI	AB AB AJ AJ AJ	AC AC AP AK AK AX	V AH AD AD AD AD AL AL	W AH AE AE AD AM AM AX	X AH AF AF AN AN AN AX	AG AG AO AO	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k 2.1 ft-	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ) k moment (AR)	2.3 0.0 18.7 2.2 0.0 25.0 4.3	ft-k k ft-k k ft-k ft-k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK) moment (AS)	2.5 0.0 18.7 2.2 0.0 25.0 4.3	ft-k m k a: k sl ft-k m k a: k sl ft-k m	noment (AL) noment (AL) xial (AL) hear (AL) hear (AL) noment (AT)	280.9 0.0 37.5 563.0 0.0 50.0 483.1	ft-k k ft-k k ft-k	moment (AE) shear (AE) moment (AM) axial (AM) shear (AM) moment (AU)	351.1 0.0 46.8 703.8 0.0 62.6 603.8	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN) ft-k moment (AV)	702.3 0.0 93.6 1407.5 0.0 125.1 1207.7	ft-k moment (AO) k axial (AG) ft-k moment (AO) k axial (AO) k shear (AO) ft-k moment (AW)	702.3 112.5 93.6 1407.5 196.9 125.1 1207.7	ft-k moment (AH k ft-k moment (AP) k k ft-k moment (AX)) 482.2	ft-k
54 64 AA AA 64 AP 76 AI AI AI AI AI AI AI	AB AB AD AJ AJ AJ AX	AC AC AP AK AK AX	V AH AD AD AD AL AL	W AH AE AE AE AM AM AM	X AH AF AF AN AN AN AN AX	AG AG AO AO	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI) moment (AQ) axial (AO)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k 2.1 ft- 70.0 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ) k moment (AR) axial (AR)	2.3 0.0 18.7 2.2 0.0 25.0 4.3 0.0	ft-k k ft-k k ft-k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK) moment (AS) axial (AS)	2.5 0.0 18.7 2.2 0.0 25.0 4.3 0.0	ft-k m k a: k sl ft-k m k a: k sl ft-k m k a:	noment (AD) hear (AD) homent (AL) xial (AL) hear (AL) hear (AL) hear (AL)	280.9 0.0 37.5 563.0 0.0 50.0 483.1 0.0	ft-k k ft-k k ft-k k	moment (AE) axial (AE) shear (AE) moment (AM) axial (AM) shear (AM) moment (AU) axial (AU)	351.1 0.0 46.8 703.8 0.0 62.6 603.8 0.0	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN) ft-k moment (AV) k axial (AV)	702.3 0.0 93.6 1407.5 0.0 125.1 1207.7 0.0	ft-k moment (AO) k axial (AG) ft-k moment (AO) k axial (AO) k shear (AO) ft-k moment (AW) k axial (AW)	702.3 112.5 93.6 1407.5 196.9 125.1 1207.7 244.1	ft-k moment (AP) k ft-k moment (AP) k k ft-k moment (AX)) 482.2	ft-k
54 64 AA AA 64 AP 76 AI AI AI 76 AX 86	AB AB AP AJ AJ AJ AX	AC AC AP AK AK AK	V AH AD AD AD AL AL AL	W AH AE AE AP AM AM AM AX	X AH AF AF AN AN AN AN	AG AG AG AO	moment (AA) axial (AA) shear (AA) moment (AI) axial (AI) shear (AI) moment (AQ) axial (AQ)	1.2 ft- 0.1 k 9.4 k 1.1 ft- 56.4 k 12.5 k 2.1 ft- 70.0 k	k moment (AB) axial (AB) shear (AB) k moment (AJ) axial (AJ) shear (AJ) k moment (AR) axial (AR)	2.3 0.0 18.7 2.2 0.0 25.0 4.3 0.0	ft-k k ft-k k ft-k k k	moment (AC) axial (AC) shear (AC) moment (AK) axial (AK) shear (AK) moment (AS) axial (AS)	2.5 0.0 18.7 2.2 0.0 25.0 4.3 0.0	ft-k m k az k sl ft-k m k az k sl ft-k m k az	noment (AD) hear (AD) hear (AD) homent (AL) hear (AL) hear (AL) hear (AL) hear (AT) xial (AT) hear (CT)	280.9 0.0 37.5 563.0 0.0 50.0 483.1 0.0	ft-k k ft-k k k	moment (AL) axial (AE) shear (AE) moment (AM) shear (AM) shear (AM) axial (AU) axial (AU)	351.1 0.0 46.8 703.8 0.0 62.6 603.8 0.0	ft-k moment (AF) k axial (AF) k shear (AF) ft-k moment (AN) k axial (AN) k shear (AN) ft-k moment (AN) k axial (AN) k shear (AN) k shear (AN) k shear (AV) k axial (AV)	702.3 0.0 93.6 1407.5 0.0 125.1 1207.7 0.0	ft-k moment (AO) k shear (AG) ft-k moment (AO) k axial (AO) k shear (AO) ft-k moment (AW) k axial (AW)	702.3 112.5 93.6 1407.5 196.9 125.1 1207.7 244.1	ft-k moment (AH k ft-k moment (AP) k k ft-k moment (AX) k) 482.2	ft-k

B.8 Clinic (N-S) 110mph

story force (k)				height (ft)																
9				22.5																
23				15																
35				15																
46				15																
40				15																
50				15																
70			-	15																
/9				22.5																
90				15																
	30	30	30	width (ft)																
					sum															
dist. of forces	1	2	2	1	6															
	Gri	d N (N-S C	linic)																	
9					moment (A)	16.7	ft-k	moment (B)	33.3	ft-k	moment (C)	33.3	ft-k	moment (D)	16.7	ft-k				
	A	В	С	D	axial (A)	1.1	k	axial (B)	0.0	k	axial (C)	0.0	k	axial (D)	1.1	k				
					shear (A)	1.5	k	shear (B)	3.0	k	shear (C)	3.0	k	shear (D)	1.5	k				
	A	В	С	D																
9	J	J	J		moment (E)	40.1	ft-k	moment (F)	80.3	ft-k	moment (G)	80.3	ft-k	moment (H)	40.1	ft-k	moment (J)	56.8	ft-k	
23					axial (E)	3.8	k	axial (F)	0.0	k	axial (G)	0.0	k	axial (H)	3.8	k				
	E	F	G	Н	shear (E)	5.4	k	shear (F)	10.7	k	shear (G)	10.7	k	shear (H)	5.4	k				1
					()	-		()			(-/			()	-					
	F	F	G	н																
23	с D	D	D		moment (K)	83.3	ft_k	moment (I)	166.7	ft_k	moment (M)	166.7	ft_k	moment (N)	83.3	ft_k	moment (P)	122 5	ft_k	
25				_	avial (K)	03.5	L L	avial (L)	100.7	Γι-κ ν	avial (M)	100.7		avial (N)	00.0	Γι-κ ν	moment (r)	123.5	Tt-K	
	V.	1	N 4			0.2	N.		22.2	N L		22.2			0.2	N L				
	N	L	IVI	IN	Siledi (K)	11.1	к	silear (L)	22.2	ĸ	silear (IVI)	22.2	к	silear (N)	11.1	ĸ				ļ
	К	L	M	N																
35	U	U	U		moment (Q)	140.4	ft-k	moment (R)	280.8	ft-k	moment (S)	280.8	ft-k	moment (T)	140.4	ft-k	moment (U)	223.75	ft-k	
46					axial (Q)	14.9	k	axial (R)	0.0	k	axial (S)	C	k	axial (T)	14.9	k				
	Q	R	S	Т	shear (Q)	18.7	k	shear (R)	37.4	k	shear (S)	37.4	k	shear (T)	18.7	k				
	Q	R	S	Т																
46	Z	Z	Z		moment (V)	211.0	ft-k	moment (W)	421.9	ft-k	moment (X)	421.9	ft-k	moment (Y)	211.0	ft-k	moment (Z)	351.39	ft-k	
56					axial (V)	23.4	k	axial (W)	0.0	k	axial (X)	0	k	axial (Y)	23.4	k				
	V	W	Х	Y	shear (V)	28.1	k	shear (W)	56.3	k	shear (X)	56.3	k	shear (Y)	28.1	k				
	V	w	х	Y																
56	AE	AE	AE		moment (AA)	294.4	ft-k	moment (AB)	588.9	ft-k	moment (AC)	588.9	ft-k	moment (AD)	294.4	ft-k	moment (AE)	505.42	ft-k	1
67					axial (AA)	33.7	k	axial (AB)	0.0	k	axial (AC)	0	k	axial (AD)	33.7	k				
	AA	AB	AC	AD	shear (AA)	39.3	k	shear (AB)	78.5	k	shear (AC)	78.5	k	shear (AD)	39.3	k				ł
						00.0		5.10a. (7.2)	70.0		511641 (716)	70.0		5.100 (7.12)	0010					,
	٨٨	٨B	٨٢				-													
67					momont (AF)	500.2	ft k	momont (AC)	1190 /	ft l	momont (ALI)	1100 4	ft k	momont (AI)	500.2	ft L	momont (AI)	001 CT	ft k	
57	LA	AJ	AJ		avial (AF)	590.2	IL-K	avial (AC)	1180.4	нК	avial (ALI)	1180.4	IL-K	avial (AI)	590.2	нК	moment (AJ)	004.05	Tt-K	ł
/9		10	A.L.	A 1	axial (AF)	59.0	K	axidi (AG)	0.0	K	axiai (AH)	104.0	K	axidi (Al)	59.0	K				1
	AF	AG	АН	AI	snear (AF)	52.5	к	snear (AG)	104.9	к	snear (AH)	104.9	К	snear (AI)	52.5	К				J
							-													
	AF	AG	AH	AI		_														
79	AO	AO	AO		moment (AK)	506.4	ft-k	moment (AL)	1012.8	ft-k	moment (AM)	1012.8	ft-k	moment (AN)	506.4	ft-k	moment (AO)	1096.6	ft-k	L
90					axial (AK)	73.1	k	axial (AL)	0.0	k	axial (AM)	C	k	axial (AN)	73.1	k				
	AK	AL	AM	AN	shear (AK)	67.5	k	shear (AL)	135.0	k	shear (AM)	135.0	k	shear (AN)	67.5	k				
																_				

B.9 Clinic (E-W) 110mph

story force (k)			height (ft)																						
20			22.5																						
52			15																						
78			15																						
103			15																						
127			15																						
150			15																						
178			22.5																						
203			15																						
30 30 30 30	30	30 30	0 30 width (ft)																						
		50 50	sum																						
dist of forces 0.8 2 2 2 2	2 1	02	01 101																						
		. 0.2																							
Grid	10 (E-W Clin	nic)																							
	20 (2 11 0																								
20							moment (A) 44.6 ft-	k moment (B)	44.6 f	t-k_moment (C)	44.6	ft-k moment (D)	44.6 ft-k	moment (F)	22.3	ft-k moment (F)	22.3 ft-k							
A B C	D F	: F					axial (A)	3.0 k	axial (B)	0.0	axial (C)	0.0	k axial (D)	0.0 k	axial (F)	0.0	k axial (F)	1.5 k							
	-						shear (A)	4.0 k	shear (B)	4.0	shear (C)	4.0	k shear (D)	4.0 k	shear (E)	2.0	k shear(F)	2.0 k	-						
							511001 (71)		onear (b)				n onear (b)		ocu: (2)		in onear (i)	210 1							
A B C	D F	F																							
20 N N N	N	N					moment (G) 107 3 ft-	k moment (H)	107 3 f	t-k_moment (I)	107.3	ft-k moment (K)	107 3 ft-l	(moment (I)	53.7	ft-k_moment (M)	53.7 ft-l	moment (N)	151 9 ft-k					
52							axial (G)	20.2 k	axial (H)	0,0 4	axial (1)	0.0	k axial (K)	0.0 k	axial (L)	0.0	k axial (M)	15.2 k		10110111					
G H I	K I	м					shear (G)	14.3 k	shear (H)	14.3	shear (1)	14.3	k shear(K)	14.3 k	shear (L)	7.2	k shear(M)	72 k							
		. 141					Silear (O)	14.J K	Silcut (II)	14.5	Silcul (J)	14.5	K Shear (K)	14.J K	Silical (L)	1.2	K Shear (W)	7.2 K							
P G H J	K L	. М																							
52 X X X X	Х	х		moment (P)	89.1 ft-k momer	nt (Q) 89.1	ft-k moment (R) 222.8 ft-	k moment (S)	222.8 f	t-k moment (T)	222.8	ft-k moment (U)	222.8 ft-k	k moment (V)	111.4	ft-k moment (W)	111.4 ft-k	moment (X)	178.2 ft-k					
78				axial (P)	5.9 k axial (C	23.8	k axial (R)	0.0 k	axial (S)	0.0	axial (T)	0.0	k axial (U)	0.0 k	axial (V)	0.0	k axial (W)	22.9 k							
Q R S T	U V	/ W		shear (P)	11.9 k shear (Q) 11.9	k shear (R)	29.7 k	shear (S)	29.7 k	shear (T)	29.7	k shear (U)	29.7 k	shear (V)	14.9	k shear (W)	14.9 k							
Q R S T	U V	/ W																							
78 AF AF AF AF	AF	AF			momen	nt (Y) 150.1	ft-k moment (Z) 375.4 ft-	k moment (AA)	375.4 f	t-k moment (AB)	375.4	ft-k moment (AC)) 375.4 ft-k	k moment (AD) 187.7	ft-k moment (AE)	187.7 ft-k	moment (AF)	239.3 ft-k					
103					axial (Y) 31.9	k axial (Z)	0.0 k	axial (AA)	0.0 k	axial (AB)	0.0	k axial (AC)	0.0 k	axial (AD)	0.0	k axial (AE)	35.9 k							
Y Z AA AB	AC A	AD AE			shear (Y) 20.0	k shear (Z)	50.0 k	shear (AA)	50.0 k	shear (AB)	50.0	k shear (AC)	50.0 k	shear (AD)	25.0	k shear (AE)	25.0 k							
Y Z AA AB	AC A	AD AE																							
103 AN AN AN AN	AN	AN			momen	nt (AG) 225.6	ft-k moment (A	H) 564.0 ft-	k moment (AI)	564.0 f	t-k moment (AJ)	564.0	ft-k moment (AK)) 564.0 ft-k	k moment (AL)	282.0	ft-k moment (AM	1) 282.0 ft-k	moment (AN)	375.7 ft-k					
127					axial (A	.G) 50.1	k axial (AH)	0.0 k	axial (AI)	0.0 k	axial (AJ)	0.0	k axial (AK)	0.0 k	axial (AL)	0.0	k axial (AM)	56.4 k							
AG AH AI AJ	AK A	AL AM			shear (AG) 30.1	k shear (AH)	75.2 k	shear (AI)	75.2 k	shear (AJ)	75.2	k shear (AK)	75.2 k	shear (AL)	37.6	k shear (AM)	37.6 k							
																								\square	
AG AH AI AJ	AK A	AL AM																							
127 AV AV AV AV	AV	AV			momen	nt (AO) 314.9	ft-k moment (A	P) 787.1 ft-	k moment (AQ)	787.1 f	t-k moment (AR)	787.1	ft-k moment (AS)) 787.1 ft-k	k moment (AT)	393.6	ft-k moment (AU)) 393.6 ft-k	moment (AV)	540.4 ft-k				<u> </u>	
150					axial (A	.0) 72.1	k axial (AP)	0.0 k	axial (AQ)	0.0 k	axial (AR)	0.0	k axial (AS)	0.0 k	axial (AT)	0.0	k axial (AU)	81.1 k							
AO AP AQ AR	AS A	AT AU			shear (AO) 42.0	k shear (AP)	105.0 k	shear (AQ)	105.0	shear (AR)	105.0	k shear (AS)	105.0 k	shear (AT)	52.5	k shear (AU)	52.5 k							
																								<u> </u>	
AO AP AQ AR	AS A	AT AU											6 . L				6.1								
150 BD BD BD BD	BD	BD			momer	nt (AW) 631.1	ft-k moment (A	X) 1577.8 ft-	k moment (AY)	1577.8 t	t-k moment (AZ)	1577.8	ft-k moment (BA)) 1577.8 ft-k	k moment (BB)) 788.9	ft-k moment (BC)	788.9 ft-k	moment (BD)	946.0 ft-k				<u> </u>	
1/8					axial (A	W) 126.1	K axial (AX)	0.0 k	axial (AY)	0.0	axial (AZ)	0.0	k axial (BA)	0.0 k	axial (BB)	0.0	k axial (BC)	141.9 k					_	<u> </u>	
aw ax ay az	ва В	SR BC			shear (чw) 56.1	K shear (AX)	140.2 k	snear (AY)	140.2	snear (AZ)	140.2	к snear (BA)	140.2 k	snear (BB)	/0.1	к snear (BC)	70.1 k							
																							_		
	DA D																								
	DA B						ft k moment /D	LI) 1252 7 L	(moment (DI)	1252 7 4	t k moment (DI)	1252.7	ft k moment (DV)	1252 7 6	(momort (DI)	676 0	ft k moment (Dt	6760 44	moment (DNI)	677 4.1	momont (DO)	677	ft k moment (DD)	1177 6 4	L I
1/0 Dr BP BP BP	מל	Dr			momen	G) 150 341.5	k avial (BLI)	11 100 I.	avial (PI)	1553./ 1		1.5551	k avial (PK)	1553./ IT-1	avial (PL)	0/0.9		0.0 10.9	avial (PNI)	07.7 IL-K	avial (BO)	07.7		11/2.0 10-1	N
	RK D		BN BO		axial (E	RG) 72.2	k chear/DUN	120 E L	shear (BI)	180 5	shear (DI)	120 5	k shoor (DK)	180 5 L	dxidi (BL)	0.0	k shoor (DM)	90.2 k	shear (RNI)	0.0 K	shear (PO)	02.7		 	
	ы\ B	DIVI			siidd (12.2		100'2 K	sileai (DI)	100.5	Sileai (DJ)	100.3	n Sliedi (DN)	100.5 K	Sileai (DL)	50.2	n pliedi (Divi)	50.2 K	Sileai (DIV)	3.U K	Siledi (DU)	5.0			

Appendix C: Moment Transfer Analysis

C.1 Hospital (N-S) 157mph

Grid E Hospital																									
	ext. col								int. col									int. col							
γ _f =1/(1+(2/3)(ν(b ₁ /b ₂))							$\gamma_f=1/(1+(2/3)(\nu(b_1/b_2)))$									$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$								
Floor 6	b ₁	38 in			34	1.5h		Floor 6	b ₁	58 in			22	2	1.5h		Floor 6	b ₁	38 in			34	1.5h		
	b ₂	34 in		20					b ₂	22 in		22				L		b ₂	34 in		20			b ₁	
	Vr	0.59		20			01		٧f	0.48		22				0 ₁		γ _f	0.59		20				
					b,		-						b		1.5h							ha			-
	vМ	F2 00 44 L	transforred by flowers		~2				v.M	44.11 () [.	turan afa wa d hu flauu		~2	2	21011			vМ	F2 00 ft l	transformed by flavour		~2			-
	4 ⁴ 141	27.07 ft.k	transferred by thear						Å [‡] IÅI	44.11 IL-K	transferred by these	e						Å [‡] IAI	27.07 ft_k	transferred by theor					
		J7.J7 ICK	transieneu by snear							47.74 IL'N									J7.J7 11-K	transferred by silear					-
Eloor E	h.	20 in				_		Eloor F	h.	50 in							Eloor E	h.	20 in						
FIUUI J	01 h	24 in						FIUUI J	0 <u>1</u>	J0 III 22 in							FIUUI J	61 b	30 III						
	U ₂	34 111							U2	22 111								U ₂	54 111						
	Ϋ́f	0.59							γ _f	0.48		_						γ _f	0.59						
	γ _f M	91.65 ft-k	transferred by flexure						γ _f M	75.03 ft-k	transferred by flexu	e						γ _f M	91.65 ft-k	transferred by flexure					
		64.59 ft-k	transferred by shear							81.22 ft-k	transferred by shear								64.59 ft-k	transferred by shear					
	1											_													
Floor 4	D ₁	38 in						Floor 4	D ₁	62 in		_	26	6	1.5h		Floor 4	D ₁	38 in						
	b2	34 in							b2	26 in		26				b,		b ₂	34 in						
	γ _f	0.59							γ _f	0.49						1		γ _f	0.59						
													b2	2	1.5h										
	γ _f M	139.87 ft-k	transferred by flexure						γ _f M	117.50 ft-k	transferred by flexu	e						γ _f M	139.87 ft-k	transferred by flexure					
		98.58 ft-k	transferred by shear							120.96 ft-k	transferred by shear								98.58 ft-k	transferred by shear					
Floor 3	b ₁	38 in						Floor 3	b ₁	62 in							Floor 3	b ₁	38 in						
	b ₂	34 in							b ₂	26 in								b ₂	34 in						
	Vr	0.59							Vf	0.49								γ _f	0.59						
	v₅M	197.55 ft-k	transferred by flexure						v₅M	165.94 ft-k	transferred by flexu	ρ						v₅M	197,55 ft-k	transferred by flexure					
		139.23 ft-k	transferred by shear							170.83 ft-k	transferred by shear								139.23 ft-k	transferred by shear					
Floor 2	b ₁	48 in			30	1.5h		Floor 2	b ₁	66 in			30	0	1.5h		Floor 2	b ₁	38 in						
	b,	30 in							b,	30 in								b,	34 in						
	Vr	0.54		30			b ₁		V	0.50		30				b ₁		Vc	0.50					_	
	T	0.34			h		-		I	0.00			h		1 Eh			fT	0.33						
					U ₂								U ₂	2	1.01										
	γ _f ivi	353.84 ft-k	transferred by flexure						γ _f ivi	327.94 ft-k	transferred by flexu	e						γ _f ivi	382.58 ft-k	transferred by flexure					
		298.38 TT-K	transferred by shear				_			324.28 TT-K	transferred by shear	_							269.64 Tt-K	transferred by shear					
FL A	L								h									h				20	1		
F10011	U1	48 in						FIOOR 1	U ₁	66 IN		_					FIOOF 1	0 ₁	66 IN			30	1.5h	-	
	b ₂	30 in							b ₂	30 in								D ₂	30 in		30			b_1	
	γ _f	0.54							γ _f	0.50								γ _f	0.50					_	
																						b ₂	1.5h		
	γ _f M	600.51 ft-k	transferred by flexure						$\gamma_{\rm f} M$	556.56 ft-k	transferred by flexu	e						$\gamma_{\rm f} M$	556.56 ft-k	transferred by flexure					
		506.39 ft-k	transferred by shear							550.34 ft-k	transferred by shear								550.34 ft-k	transferred by shear					

	ext. col							
=1/(1+(2/3)(V(b ₁ /b ₂))								
por 1	b ₁	40	in			22	1.5h	
	b ₂	22	in		22			b ₁
	γ _f	0.53			22			
						b ₂		
	γ _f M	582.91	ft-k	transferred by flexure				
		523.99	ft-k	transferred by shear				

C.2 Hospital (E-W) 157mph

Grid 19 Hospital																																	
	ext.col							int. col						int.col					int.col					int.co						ext. col			
v_1/(1+(2/3)/v/h /h)	١						v.=1/(1+/2/3)/v/h /h	n					v.=1/(1±/2/3)(v/h /h)	1				v1/(1+(2/3)/s/lh /h	.11					v.=1/(1+(2/2)(vl/h /h))					v.=1/(1+(2/2)/v/h /h)	1			
H-1(1,14)0(100)	1						hi-1/(1,(1)/(10)/	211					1-1/1/(1/0///0)	1				H-1/11/40/4030	201					k-1/1.(1)01/01/02/02/1					41-11(11(1)(10)(10))				
																		Floor 6	b ₁	40 in	22	1.5h		Floor 6 b ₁	58 in		22	1.5h	Floor 6	b ₁ 44 in		26	1.5h
																			b ₂	22 in			b ₁	b2	22 in					b ₂ 26 in			b1
																			Υ _f	0.53	11			Yf	0.48		Ш.		01	Vr 0.54		1	
																					b ₂						b ₂	1.5h				b ₂	
																			γ _i M	126.63 ft-k	transferred by flexure			γ _i N	115.47 ft-k	transferred by flexure				y₁M 128.77 ft	k transferred by flexure		
																				113.83 ft-k	transferred by shear				124.99 ft-k	transferred by shear				111.68 ft	k transferred by shear		
																		Floor 5	b ₁	40 in				Floor 5 b ₁	58 in				Floor 5	b ₁ 44 in			
																			b ₂	22 in				b2	22 in					b ₂ 26 in			
																			Ϋ́f	0.53				٧f	0.48					¥r 0.54			
																														<u> </u>			
																			γ _i M	229.38 ft-k	transferred by flexure			γ _i γ	209.16 ft-k	transferred by flexure				γ _f M 233.27 ft-	k transferred by flexure		
																				206.19 ft-k	transferred by shear				226.41 ft-k	transferred by shear				202.30 ft-	k transferred by shear		
																		ri 4	h			4.51		ri a b						h 10:			
																		F100F 4	U1	44 in 26 in	20	1.50	- L -	HOOr4 U1	62 IN		26	1.50	HOOF 4	U1 48 IN		30	1.5N
																			U2	20 111	26		U1	U2	20 111		26		b ₁	U2 30 III		J	U1
																			Yf	0.54		-		Yf	0.49			4 54		Vf 0.54		-	
																				ace 10 (1)	02				1 mm n (r 1		02	1.50		uld amout		02	
																			Yawi	300.18 TC-K	transferred by flexure			Yin	336.91 TC-K	transferred by flexure				YHM 3/U.94 TC-	k transferred by flexure		
																				J17.J7 ICK	transieneu by snear				340.04 TCN	u di sici i cu uy si cai				512.01 11-	k Dansieneu by silear		
Floor 3	b ₁	42 in		20	1.Sh		Floor 3	b ₁	58 in		22	1.5h	Floor 3	b ₁	8 in	22	1.5h	Floor 3	b ₁	62 in	26	1.5h		Floor 3 b ₁	62 in				Floor 3	b ₁ 48 ir			
	b,	20 in				b ₁		b,	22 in					b,	12 in				b,	26 in				b ₂	26 in					b ₂ 30 in			
	Vi	0.51		24				Vi	0.48		22	b ₁		Yr 0.	18	2	b ₁		¥.	0.49	26		b1	Vf	0.49					¥ 0.54			
				b,							b,	1.5h				b,	1.5h				b,	1.5h											
	v _# M	500.13 ft-k	transferred by flexure					y _# M	472.18 ft-k tran	sferred by flexure				y₂M 472.	18 ft-k transferred by flexure				y _# M	484.51 ft-k	transferred by flexure			y.AV	484.51 ft-k	transferred by flexure				vM 533.45 ft	k transferred by flexure		
		483.17 ft-k	transferred by shear						511.12 ft-k trans	sferred by shear				511.	12 ft-k transferred by shear					498.79 ft-k	transferred by shear				498.79 ft-k	transferred by shear				449.84 ft	k transferred by shear		
Floor 2	b ₁	44 in		26	1.5h		Floor 2	b ₁	62 in		26	1.5h	Floor 2	b ₁	18 in			Floor 2	b ₁	66 in	30	1.5h		Floor 2 b ₁	62 in				Floor 2	b ₁ 52 in		34	1.5h
	b ₂	26 in		26		b ₁		b ₂	26 in		26	h.		b ₂	12 in				b ₂	30 in	30		h	b2	26 in					b ₂ 34 in		4	b1
	Yf	0.54						γ _f	0.49			•1		Υ _f 0.	18				Ϋ́f	0.50	30		•1	٧f	0.49					¥r 0.55			
				b ₂							b ₂	1.5h									b ₂	1.5h										b ₂	
	γ _f M	921.68 ft-k	transferred by flexure					γ _i M	848.01 ft-k trans	sferred by flexure				γ _f M 826.	4 ft-k transferred by flexure				γ _i M	865.35 ft-k	transferred by flexure			γ _i N	1 848.01 ft-k	transferred by flexure				y _i M 943.30 ft	k transferred by flexure		
		799.34 ft-k	transferred by shear						873.01 ft-k trans	sferred by shear				894.	58 ft-k transferred by shear					855.68 ft-k	transferred by shear				873.01 ft-k	transferred by shear				777.72 ft-	k transferred by shear		
																														++			
Floor 1	b ₁	44 in					Floor 1	b ₁	62 in				Floor 1	b ₁	52 in	26	1.5h	Floor 1	b ₁	66 in	30	1.5h	_	Floor 1 b ₁	62 in		34	1.5h	Floor 1	0 ₁ 52 in			
	b2	26 in						b ₂	26 in					b2	26 IN	5	b ₁		b ₂	30 in	30		b1	b2	26 in		34		b ₁	b ₂ 34 in			
	Ŷf	0.54						Ŷŕ	0.49					Y _f O.	19				¥f	0.50		_ _	_	Ύf	0.49					¥f 0.55			
																b ₂	1.5h				b2	1.5h					b ₂	1.5h					
	γ _f M	1142.47 ft-k	transferred by flexure					γ _i M	1051.15 ft-k tran:	sferred by flexure				γ ₁ Μ 1051.	15 ft-k transferred by flexure				γ _i M <u>1</u>	1072.64 ft-k	transferred by flexure			γ _t Ν	1051.15 ft-k	transferred by flexure				y₁M 1169.27 ft-	k transferred by flexure		
		990.82 ft-k	transferred by shear						1082.14 tt-k tran:	sterred by shear				1082.	14 tt-k transferred by shear				1	1060.66 ft-k	transferred by shear				1082.14 ft-k	transferred by shear				964.02 ft-	к transferred by shear	_	

C.3 Clinic (N-S) 157mph

Grid N Clinic																	
	int. cols.								ext. cols.								
$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$								$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$									
Floor 6	b ₁	58 in			22	1.5ł	1	Floor 6	b ₁	38 ii	n			24	1.5h		
	b ₂	22 in							b ₂	24 ii	n					b₁	
	V.	0.49		22			b ₁		V.	0.54			20			-	
	r t	0.48			h	1 54			rt	0.54				h			
					D ₂	1.3								D ₂			
	γ _f IVI	120.78 ft-k	transferred by flexure					 	γ _f IVI	136.78 f	t-k	transferred by flexure					
		130.74 ft-k	transferred by shear							114.74 f	t-k	transferred by shear					
Floor 5	b ₁	58 in						 Floor 5	b ₁	38 ii	n						
	b ₂	22 in							b ₂	24 ii	n						
	γ _f	0.48							γ _f	0.54							
	$\gamma_f M$	218.76 ft-k	transferred by flexure						$\gamma_f M$	247.74 f	t-k	transferred by flexure					
		236.80 ft-k	transferred by shear							207.82 f	t-k	transferred by shear					
Floor 4	b ₁	62 in			26	1.5ł	1	Floor 4	b ₁	38 ii	n			34	1.5h		
	b ₂	26 in							b ₂	34 ii	n					b1	
	V.	0 49		26			b ₁		V.	0 59			20				
		0.15			h.	1 5ł	<u> </u>		• •	0.55				h.			
	N.4	252.20 (1.1	(~2	1.51	•			440.40.0				~ <u>7</u>			
	γ _f ivi	352.38 ft-K	transferred by flexure						γ _f ivi	419.49 f	t-K ► 1/	transferred by flexure					
		502.70 TL-K	transferred by silear							295.05 1	L-K	transferred by silear					
Floor 2	h	(2) in						 Electr 2	h	20:							
	ь	02 III							6 6	30 II 24 ii	-						
	D ₂	20 111							D ₂	34 11	1						
	γ _f	0.49						 	γ _f	0.59							
	γ _f M	506.77 ft-k	transferred by flexure						γ _f M	603.28 f	t-k	transferred by flexure					
		521.71 ft-k	transferred by shear					 		425.19 f	t-k	transferred by shear					
Floor 2	b ₁	66 in			30	1.5ł	1	 Floor 2	b ₁	38 ii	n						
	b ₂	30 in		30			b		b ₂	34 ii	n						
	γ _f	0.50							γ _f	0.59							
					b ₂	1.5ł	1										
	γ _f M	905.06 ft-k	transferred by flexure						γ _f M	1055.85 f	t-k	transferred by flexure					
		894.94 ft-k	transferred by shear							744.15 f	t-k	transferred by shear					
Floor 1	b ₁	66 in						Floor 1	b ₁	38 ii	n						
	b ₂	30 in							b ₂	34 ii	n						
	۲ ۷	0.50							V.	0 50							
	11	0.50								0.55							
	ν _ε Μ	1121 82 f+₋b	transferred by flexure						v.M	1309 73 f	t-k	transferred by flexure					
	11	1109 29 ft-k	transferred by shear						1,1,1,1	977 28 f	t-k	transferred by shear					
		1105.25 It K	anistence by shed							522.50		a ansierreu by silear					
														1			

C.4 Clinic (E-W) 157mph

Grid 10 Clinic																													
e	xt.col					int.col					int. col.						int.col.				int.col.				ext.col.				
γ _f =1/(1+(2/3)(V(b ₁ /b ₂))					γ _i =1/(1+(2/3)(V(b ₁)	/b ₂))				γ _f =1/(1+(2/3)	V(b ₁ /b ₂))					γ _f =1/(1+(2/3)(v(b ₁ /b ₂))				γ _f =1/(1+(2/3)(ν(b ₁ /b ₂))			γ _f =1/(1+(2/3)(V(b ₁ /	<u>ь))</u>				
	L					L .					L.						L												
Hoorb	D1	36 in		30 1.5h	Floor6	0 ₁	58 in	11	1.5h	Hoorb	01	62 in		Zb	1.5h	FIOOLP	01 51.5	in .	Zb	1.5h									
	b ₂	30 in	18		01	D ₂	22 in 22		b ₁		D ₂	26 in		26	b ₁		D ₂ Zb	in	33.5										
	γ _f	0.58				Yf C	0.48				¥r	0.49					Yr 0.52												
				b ₂				b ₂	1.5h					b ₂	1.5h				b ₂										
	γ _i M	209.77 ft-k	transferred by flexure			γ _i M 174	4.30 ft-k transferred by flexure				γ _i M	178.85 ft-k	transferred by flexure				γ _f M 187.27	ft-k transferred by flexure	1										
		153.20 ft-k	transferred by shear			188	8.67 ft-k transferred by shear					184.12 ft-k	transferred by shear				175.70	ft-k transferred by shear											
Floor 5	b ₁	36 in			Floor 5	b ₁	58 in			Floor 5	D ₁	62 in				Floor 5	D ₁ 51.5	in											
	b2	30 in				b2	22 in				b ₂	26 in					b ₂ 26	in											
	γ _f	0.58				Yr C	0.48				Yr	0.49					Yr 0.52												
	γ _i M	281.53 ft-k	transferred by flexure			γ ₄ M 233	3.92 ft-k transferred by flexure				γ _i M	240.03 ft-k	transferred by flexure				γ _f M 251.32	ft-k transferred by flexure	9										
		205.60 ft-k	transferred by shear			25:	3.21 ft-k transferred by shear					247.10 ft-k	transferred by shear				235.81	ft-k transferred by shear											
	L					L .					L.						L												
Hoor4	D1	36 in			Floor 4	0 ₁	62 in	Zb	1.5h	Hoor 4	01	62 in				Floor 4	01 51.5	in .											
	b ₂	30 in				D ₂	26 in 26		b ₁		D ₂	26 in					D ₂ Zb	in											
	γ _f	0.58				Yf (0.49				¥r	0.49					¥f 0.52												
								b ₂	1.5h																				
	γ _i M	441.95 ft-k	transferred by flexure			γ _i M 376	6.80 ft-k transferred by flexure				γ _i M	376.80 ft-k	transferred by flexure				γ _f M 394.53 i	ft-k transferred by flexure	1										
		322.75 ft-k	transferred by shear			387	7.91 ft-k transferred by shear					387.91 ft-k	transferred by shear				370.17	ft-k transferred by shear											
	1																												
Floor 3	b ₁	36 in			Floor 3	b ₁	62 in			Floor 3	D ₁	66 in		30	1.5h	Floor 3	D ₁ 51.5	in											
	b2	30 in				b2	26 in				b ₂	30 in		30	b ₁		b ₂ 26	in											
	γ _f	0.58				Yf (0.49				Yr	0.50					Yr 0.52												
														b ₂	1.5h														
	γ _i M	635.59 ft-k	transferred by flexure			γ ₄ M 541	1.89 ft-k transferred by flexure				γ _i M	552.97 ft-k	transferred by flexure				γ _f M 567.39	ft-k transferred by flexure											
		464.17 ft-k	transferred by shear			557	7.86 ft-k transferred by shear					546.79 ft-k	transferred by shear				532.36	ft-k transferred by shear											
Floor 2	b ₁	36 in			Floor 2	b ₁	66 in	30	1.5h	Floor 2	b ₁	66 in		30	1.5h	Floor 2	b ₁ 53.5 i	in	30	1.5h									
	b2	30 in				b ₂	30 in 30		b,		b2	30 in		30	b ₁		b ₂ 30	in	35.5		0 ₁								
	γ _f	0.58				Yr C	0.50				¥r	0.50					¥f 0.53												
								b ₂	1.5h					b ₂	1.5h				b ₂										
	γ _i M 1	1112.38 ft-k	transferred by flexure			γ _i M 967	7.78 ft-k transferred by flexure				γ _i M	967.78 ft-k	transferred by flexure				γ _f M 1018.24	ft-k transferred by flexure	1										
		812.37 ft-k	transferred by shear			956	6.97 ft-k transferred by shear					956.97 ft-k	transferred by shear				906.51	ft-k transferred by shear									_		
Floor 1	b ₁	36 in			Floor 1	b ₁	66 in			Floor 1	b ₁	66 in				Floor 1	b ₁ 71.5	in	30	1.5h	Floor 1 b ₁ 58 in	22	1.5h	Floor 1	b ₁ 40 in		22	1.5h	
	b ₂	30 in				b ₂	30 in				b2	30 in					b ₂ 30	in	35.5		b ₁ b ₂ 22 in	2	b,		b ₂ 22 in	2	2		b ₁
	γ _f	0.58				Yf (0.50				Yr	0.50					Yr 0.49				· Yr 0.48		-1		Vr 0.53				
																			b ₂	1.5h		b ₂	1.5h				b ₂		
	γ _i M 1	1378.81 ft-k	transferred by flexure			γ _f M 1199	9.57 ft-k transferred by flexure				γ _i M	1199.57 ft-k	transferred by flexure				γ _f M 1175.70	ft-k transferred by flexure			y,M 1145.64 ft-k transferred by flexure				γ _f M 1256.36 ft-k	transferred by flexure			
	1	1006.94 ft-k	transferred by shear			1186	6.17 ft-k transferred by shear					1186.17 ft-k	transferred by shear				1210.04	ft-k transferred by shear			1240.11 ft-k transferred by shear				1129.38 ft-k	transferred by shear			

C.5 Hospital (N-S) 110 mph

Grid E Hospital																																	
	ext. col								int. col									int. col								ext. col							
$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$								$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$								γ _f =1/	/(1+(2/3)(V(b ₁ /b ₂))								$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$)							
Floor 6	b ₁	38 in			34	1.5h		Floor 6	b ₁	58 in			22	1.5h		Floo	or 6	b ₁	38 in		34		1.5h										
	b,	34 in							b,	22 in								b ₂	34 in					b ₁									
	V.	0.50		20			b ₁		V.	0.49		22			b ₁			V.	0.50		20												
	ft	0.35			h		-		ft	0.40			h	1 Eb	-			rt	0.35		h												
					U ₂							_	U ₂	1.311							U2		_										
	γ _f M	26.41 ft-k	transferred by flexure	2					γ _f M	21.62 ft-k	transferred by flexu	re						γ _f M	26.41 ft-k	transferred by flexure										L			
		18.61 ft-k	transferred by shear							23.40 ft-k	transferred by shear	•							18.61 ft-k	transferred by shear										L			
																														L			
Floor 5	b ₁	38 in						Floor 5	b ₁	58 in						Floo	or 5	b ₁	38 in														
	b ₂	34 in							b ₂	22 in								b ₂	34 in														
	γ _f	0.59							γ _f	0.48								γ _f	0.59														
	γ _f M	44.93 ft-k	transferred by flexure						γ _f M	36.78 ft-k	transferred by flexu	re						γ _f M	44.93 ft-k	transferred by flexure													
		31.67 ft-k	transferred by shear							39.81 ft-k	transferred by shear								31.67 ft-k	transferred by shear													
Floor 4	b,	38 in						Floor 4	b,	62 in			26	1.5h		Floo	or 4	b,	38 in														
	h.	34 in							h.	26 in								h.	34 in														
	~ <u>/</u>	0.50								0.40		26			b ₁			~2	0.50				_										
	Υf	0.59							Ϋ́f	0.49				4.51	-			Ύf	0.59														
												_	D ₂	1.5h																L			
	γ _f M	68.58 ft-k	transferred by flexure	2					γ _f M	57.61 ft-k	transferred by flexu	re						γ _f M	68.58 ft-k	transferred by flexure													
		48.33 ft-k	transferred by shear							59.31 ft-k	transferred by shear	•							48.33 ft-k	transferred by shear													
																							_										
Floor 3	b ₁	38 in						Floor 3	b ₁	62 in						Floo	or 3	b ₁	38 in														
	b ₂	34 in							b ₂	26 in								b ₂	34 in														
	γ _f	0.59							γ _f	0.49								γ _f	0.59														
	γ _f M	96.87 ft-k	transferred by flexure	2					γ _f M	81.37 ft-k	transferred by flexu	re						γ _f M	96.87 ft-k	transferred by flexure													
		68.27 ft-k	transferred by shear							83.77 ft-k	transferred by shear	•							68.27 ft-k	transferred by shear													
Floor 2	b ₁	48 in			30	1.5h		Floor 2	b ₁	66 in			30	1.5h		Floo	or 2	b ₁	38 in														
	b,	30 in							b,	30 in								b,	34 in														
	V.	0.54		30			b ₁		V.	0.50		30			b ₁			V.	0.50														
	Ŷt	0.54			h				Ŷt	0.50				1 54				ŕt	0.59														
					D ₂								D ₂	1.50																			
	γ _f M	173.50 ft-k	transferred by flexure	2					γ _f M	160.81 ft-k	transferred by flexu	re						γ _f M	187.60 ft-k	transferred by flexure										L			
		146.31 ft-k	transferred by shear							159.01 ft-k	transferred by shear	·							132.22 ft-k	transferred by shear										L			
																													+	<u> </u>			
Floor 1	b ₁	48 in						Floor 1	b ₁	66 in						Floo	or 1	b ₁	66 in		30	_	1.5h		Floor 1	b ₁	40 in			22	1.5h	_	
	b ₂	30 in							b ₂	30 in								b ₂	30 in		30			h		b ₂	22 in					b ₁	
	γ _f	0.54							γ _f	0.50								γ _f	0.50		50			v1		γ _f	0.53						
																					b ₂		1.5h							b ₂			
	٧٤M	294 46 ft-k	transferred by flexure						٧۶M	272 91 ft-k	transferred by flexu	re						٧٤M	272 91 ft-k	transferred by flexure	-		1			٧،M	285.83 ft-k	transferred by flexure	<u>م</u>				
	0	248.31 ft-k	transferred by hexar							269.86 ft-k	transferred by next							0.1	269.86 ft-k	transferred by shear						0	256.94 ft-k	transferred by shear	+				-
		= .0.01 It N	a and circle by shear							200.00 11 1									200100 11 1	a anoten eu by sneur		_					200.0-T TC R	a ansience by shear	+				-
					I	1							1 I I		1	1																	

C.6 Hospital (E-W) 110 mph

Grid 19 Hospital																																
	ext. col					int. col					int.	col						int. col					int. col				ext. c	col				
γ _f =1/(1+(2/3)(V(b ₁ /	b ₂))				γ _i =1/(1+(2/3)(V(b ₁ /b	b ₂))				γ	=1/(1+(2/3)(v(b ₁ /b ₂))						γ _f =1/(1+(2/3)(v(b ₁ /b ₂)))				γ _f =1/(1+(2/3)(v(b ₁ /b ₂))				y=1/(1+(2/3)(V(b_1/b_2))					
																	Elogré	h. 40	in	20	1 Sh	Elearn	h. sein	,	n	156	Elogré h	h. Min			156	
																	FIDULO	h. 22	in	u	1.311 h.	FIDULD	h. 22 ir	1	2	1.311	huuro	1 44 III 1 76 in		20	1.31	h.
																		v. 0.52		22			v. 0.49	22		b1		· 054		26		•1
																		CC.U 19		h			γr U.46		h	1.5h	r	(1 0.34		h		
																		v.M c1.00	ft k transformd huflowy	• <u>•</u>			VM CCCO A	t k tenerforred hu flavure	52	1.011	L. L	M (7) 11 (H).	transformed by flay			
																		55.78	ft-k transferred by shear	e			61.25 f	t-k transferred by shear				54.73 ft-k	transferred by she	ar		
																	Floor 5	b ₁ 40	in			Floor 5	b ₁ 58 in	1			Floor 5 b	P ₁ 44 in				
																		b ₂ 22	in				b ₂ 22 in	1			b	0 ₂ 26 in				
																		Yr 0.53					Yr 0.48				γ	fi 0.54				
																		γ _f M <u>112.44</u>	ft-k transferred by flexur	e			γ _i M 102.53 f	t-k transferred by flexure			V-	M 114.35 ft-k	transferred by flex-	ure		
																		101.08	ft-k transferred by shear				110.99 f	t-k transferred by shear				99.17 ft-k	transferred by shee	Jr		
																	Floor 4	01 44	in .	26	1.5h	Floor 4	0 ₁ 62 in	1	26	1.5h	Floor 4 D	P ₁ 48 in		30	1.Sh	
																		02 26	In	26	01		D ₂ 2b ii	26		b ₁	D) ₂ 30 in				01
																		Yr 0.54					Yr 0.49				γ	fi 0.54				
																				D ₂					D ₂	1.5h				D ₂		
																		γ _f M 179.53	It-k transferred by flexur ft k transferred by shore	e			Y-M 165.18 f	t-k transferred by flexure			Y.	M 181.87 ft-k	transferred by flexu	91L		
																		100.70	It-K transieneu by snear				1/0.001	- K transierreu by silear				T02'20 If-K	ualisierieu by silea			
Floor 3	b, 47	1	20	1 Sh	Floor 3	b, 1	R in	22	1 Sh	F	loor 3	b. 58 in			22 1	Sh	Floor 3	b, 67	in	26	1 Sh	Floor 3	b. 67 ir	1			Floor 3 b), <u>4</u> 8 in				
	b, 20i	1		b		b, 1	12 in	_				b, 22 in			_			b, 26	in				b, 26 in	1			b	5 30 in				
	¥ 0.51		24			W 0.	18	22		b ₁		v 0.48		22		1	b ₁	V: 0.49		26	b		V: 0.49				y	A 0.54				
			b,					b,	1.5h						b, 1	.5h				b,	1.5h											
	V/M 245.24	-k transferred by flexure				y.M 231.	3 ft-k transferred by flexure				y	M 231.53 ft-	transferred by fle	xure				y.M 237.58	ft-k transferred by flexur	ρ .			₩M 237.58 f	t-k transferred by flexure			y.j	M 261.58 ft-k	transferred by flex	aure		
	236.92	t-k transferred by shear				250.0	i3 ft-k transferred by shear					250.63 ft-	transferred by she	sar				244.58	ft-k transferred by shear	-			244.58 f	t-k transferred by shear				220.58 ft-k	transferred by she	ar		
Floor 2	b ₁ 44	1	26	1.5h	Floor 2	b ₁	2 in	26	1.5h	F	loor 2	b ₁ 58 in					Floor 2	b ₁ 66	in	30	1.5h	Floor 2	b ₁ 62 in	1			Floor 2 b	0 ₁ 52 in		34	1.5h	
	b ₂ 26	1	26	b ₁		b ₂ .	16 in	26		b.		b ₂ 22 in						b ₂ 30	in	30	b.		b ₂ 26 in	1			b	o ₂ 34 in		34		b1
	Yr 0.54					Yr O.4	19	-		-1		Yr 0.48						Yr 0.50			-		Yr 0.49				γ	fi 0.55				
			b ₂					b ₂	1.5h											b ₂	1.5h									b ₂		
	γ _f M 451.96	t-k transferred by flexure				γ _f M 415.8	13 ft-k transferred by flexure				Y	₁ M 405.25 ft-	transferred by fle	xure				γ _f M 424.33	ft-k transferred by flexur	e			γ _i M 415.83 f	t-k transferred by flexure			γi	M 462.56 ft-k	transferred by flex-	ure		
	391.96	t-k transferred by shear				428.0	19 ft-k transferred by shear					438.67 ft-	transferred by she	sar				419.59	ft-k transferred by shear				428.09 f	t-k transferred by shear				381.36 ft-k	transferred by shea	ır		
-							-									-																
Floor 1	0 ₁ 44	1			Floor 1	0 ₁	2 in r :			ŀ	loor 1	D ₁ 62 in			26 1	.Sh	Floor 1	D1 66	in 	30	1.5h	Floor 1	0 ₁ 62 II	1	34	1.5h	Hoor1 D	P1 52 in				
	U ₂ 20	1				02	10 IN					0 ₂ 20 m		26		1	b1	02 30	n	- 30	b		02 20 1	34		b ₁) ₂ 34 IN				
	¥r 0.54					¥ 0.4	9					Yf U.49				Ch.		¥f 0.50		h	1.56		Yr 0.49			1.5	Ŷ	fr 0.55			+	
															U ₂					02	101				D2	1.31		N				
	γ _f wi 560.22 1 Λος ος 1	-K transferred by flexure				Y _f M 515.4	H TC-K transferred by flexure				Y	4M 515.44 ft- 530.64 ft	transferred by fle	xure				Y/M 525.98	rt-K transferred by flexur ft-k transferred by choor	e			YHM 1051.15 f	t-x transferred by flexure			Y.	パロ 5/3.36 tt-k パフフ フク チャレ	transferred by flexu	ar	+	
	403.00	an unisieneu uy snedr				330.1	mic is unisiened by siled						u ansierreu uy Sile	.ui				540.10	ic n cransrerieu uy stiedr				1002.14	u ansieneu Uy siledi				472.72 IL-K	aransierreu uy stiea	-	+ +	

C.7 Clinic (N-S) 110 mph

Grid N Clinic																		
	int. cols.									ext. cols.								
$\gamma_f = 1/(1+(2/3)(v(b_1/b_2)))$									$\gamma_f = 1/(1+(2/3)(\sqrt{b_1/b_2}))$									
Floor 6	b ₁	58 in			22		1.5h		Floor 6	b ₁	38	in			24	1.5h		
	b ₂	22 in						1		b ₂	24	in					b ₁	
	V.	0.49		22				b ₁		N _c	0.54			20			-	
	ΥŤ	0.48			h		1 Eb	-		ŶŤ	0.34				h			
					U ₂		1.311								D ₂			
	γ _f M	59.29 ft-k	transferred by flexure							γ _f IVI	67.15	ft-k	transferred by flexure					
		64.18 ft-k	transferred by shear		11						56.33	ft-k	transferred by shear					
Floor 5	b ₁	58 in							Floor 5	b ₁	38	in						
	b ₂	22 in								b ₂	24	in						
	γ _f	0.48								γ _f	0.54							
	γ _f M	107.45 ft-k	transferred by flexure							γ _f M	121.68	ft-k	transferred by flexure					
		116.30 ft-k	transferred by shear								102.07	ft-k	transferred by shear					
			,															
Floor 4	b ₁	62 in			26		1.5h		Floor 4	b ₁	38	in			34	1.5h		
	b ₂	26 in						-		b ₂	34	in					b ₁	
	~2	0.40		26				b ₁		~2	0.50			20			1	
	Υf	0.49						-		Υf	0.59							
					b ₂		1.5h								b ₂			
	γ _f M	173.14 ft-k	transferred by flexure							γ _f M	206.12	ft-k	transferred by flexure					
		178.25 ft-k	transferred by shear								145.27	ft-k	transferred by shear					
Floor 3	b ₁	62 in							Floor 3	b ₁	38	in						
	b ₂	26 in								b ₂	34	in						
	γ _f	0.49								γ _f	0.59							
	γ _f M	249.04 ft-k	transferred by flexure							γ _f M	296.47	ft-k	transferred by flexure					
		256.38 ft-k	transferred by shear								208.95	ft-k	transferred by shear					
												-	,					
Floor 2	b1	66 in			30		1.5h		Floor 2	b₁	38	in						
	h.	30 in					2.0.1	-		h.	34	in						
		0.50		30				b ₁			0.50							
	Υf	0.50						-		Υf	0.59							
					b ₂		1.5h											
	γ _f M	444.81 ft-k	transferred by flexure							γ _f M	518.92	ft-k	transferred by flexure					
		439.84 ft-k	transferred by shear								365.73	ft-k	transferred by shear					
Floor 1	b ₁	66 in							Floor 1	b ₁	38	in						
	b ₂	30 in								b ₂	34	in						
	γ _f	0.50								Υ _f	0.59							
	ν _f M	551.38 ft-k	transferred by flexure							٧٤M	643 24	ft-k	transferred by flexure					
		545.22 ft-k	transferred by shear								453.35	ft-k	transferred by shear					
						1							1		1	I		

C.8 Clinic (E-W) 110mph

Grid 10 Clinic																																						
6	ext. col						int. col							int. col.						int. col.						int. col.						ext. o	col.					
													the statistical de																									
$\gamma_1 = 1/(1 + (2/3)(V(b_1/b_2)))$						γ _f =1/(1+(2/3)(V(b ₃ /	b ₂))						γ _f =1/(1+(2/3)(V(b ₃ /b ₂	,))					γ _f =1/(1+(2/3)(v(b	o ₁ /b ₂))					γ ₁ =1/(1+(2/3)(V(b ₁ /b ₂	o ₂))					γ _f =1/(1+(2	2/3)(v(b ₁ /b ₂))						
																										_												
Floor 6	U ₁	36 in		30	1.5h	Floor 6	0 ₁	58 in		22	1.5h		Floor6	U1	62 in		Zb	15h	Floor 6	0 ₁	51.5 in	26	1.5h			_												_
	D ₂	30 in		18	01		D2	22 in		22		b1		02	Zbin	26		b ₁		D2	26 in	33.5		01														
	Y _f O	.58					Yf	0.48						Yf	0.49					¥f	0.52		_															
				b ₂						b ₂	1.5h						b ₂	1.5h				b ₂																
	γ _i M 103	.00 ft-k	transferred by flexure				γ _f M	85.58 ft-k	transferred by flexure					γ _i M	87.81 ft-k transferred by fl	exure				γ _i M	91.95 ft-k	transferred by flexure																
	75	.22 ft-k	transferred by shear					92.64 ft-k	transferred by shear					!	90.40 ft-k transferred by sh	lear					86.27 ft-k	transferred by shear																
Floor 5	b ₁	36 in				Floor 5	b ₁	58 in					Floor 5	D1	62 in				Floor 5	b ₁	51.5 in																	
	b ₂	30 in					b ₂	22 in						b ₂	26 in					b ₂	26 in																	
	Y _f O	.58					Yf	0.48						Υ _f	0.49					¥f	0.52																	
		_																								_												
	γ _f M <u>1</u> 38	.28 ft-k	transferred by flexure				₩	114.89 ft-k	transferred by flexure					γ _f M <u>1</u>	17.89 ft-k transferred by fl	exure				γ _i M	123.44 ft-k	transferred by flexure																
	100	.98 ft-k	transferred by shear					124.37 ft-k	transferred by shear					1	21.37 ft-k transferred by sh	iear					115.82 ft-k	transferred by shear																
																										_												
Floor 4	b ₁	36 in				Floor 4	b ₁	62 in		26	1.5h		Floor 4	D1	62 in				Floor 4	b ₁	51.5 in																	
	b ₂	30 in					b ₂	26 in		26		b1		b ₂	26 in					b ₂	26 in																	
	Yr O	.58					¥ŕ	0.49						¥ŕ	0.49					¥ŕ	0.52																	
										b ₂	1.5h																											
	γ _f M 217	.15 ft-k	transferred by flexure				γ _i M	185.14 ft-k	transferred by flexure					γ _f M <u>1</u>	85.14 ft-k transferred by fl	exure				γ _i M	193.86 ft-k	transferred by flexure																
	158	.59 ft-k	transferred by shear					190.60 ft-k	transferred by shear					1	90.60 ft-k transferred by sh	iear					181.89 ft-k	transferred by shear																
		_																								_												
Floor 3	b ₁	36 in				Floor 3	b ₁	62 in					Floor 3	b1	62 in				Floor 3	b ₁	51.5 in																	
	b ₂	30 in					b ₂	26 in						b ₂	26 in					b ₂	26 in																	
	Yr O	.58					¥ŕ	0.49						Yr	0.49					¥r	0.52																	
	γ _f M 312	.34 ft-k	transferred by flexure				γ _i M	266.30 ft-k	transferred by flexure					γ _f M 2	66.30 ft-k transferred by fl	exure				γ _i M	278.83 ft-k	transferred by flexure																
	228	.10 ft-k	transferred by shear					274.15 ft-k	transferred by shear					2	74.15 ft-k transferred by sh	lear					261.62 ft-k	transferred by shear																
																										_												_
Floor 2	b ₁	36 in				Floor 2	b ₁	66 in		30	1.5h		Floor 2	D1	66 in		30	1.5h	Floor 2	b ₁	53.5 in	30	1.5h															
	b ₂	30 in					b ₂	30 in		30		b1		b ₂	30 in	30		b ₁		b ₂	30 in	35.5		b1														
	Yr O	.58					¥ŕ	0.50						¥ŕ	0.50					¥ŕ	0.53																	
										b ₂	1.5h						b ₂	1.5h				b ₂																
	γ _f M 546	.71 ft-k	transferred by flexure				γ _i M	475.64 ft-k	transferred by flexure					γ _f M 4	75.64 ft-k transferred by fl	exure				γ _i M	500.44 ft-k	transferred by flexure																
	399	.26 ft-k	transferred by shear					470.33 ft-k	transferred by shear					4	70.33 ft-k transferred by sh	iear					445.53 ft-k	transferred by shear																
		_																																				
Floor 1	b1	36 in				Floor 1	b ₁	66 in					Floor 1	b ₁	66 in				Floor 1	b ₁	71.5 in	30	1.5h	_	Floor 1	b ₁	58 in	2	2	1.5h	Floor 1	b	0 ₁ 40 in			22	1.5h	
	b ₂	30 in					b ₂	30 in						b ₂	30 in					b ₂	30 in	35.5		b.		b ₂	22 in	22		b.		b	0 ₂ 22 in		22		b ₁	4
	Yr O	.58					Yr	0.50						¥r	0.50					¥r	0.49			·1		γ _f	0.48			•1		γ	Yr 0.53		-			
																						b ₂	1.5h					b	2	1.5h						b ₂		
	γ _f M 677	.69 ft-k	transferred by flexure				γ _i M	589.59 ft-k	transferred by flexure					γ _f M 5	89.59 ft-k transferred by fl	exure				γ _i M	577.86 ft-k	transferred by flexure				γ _i M	563.08 ft-k transferred by flexure					Y	M 617.50 ft-k	transferred by f	lexure			
	494	.91 ft-k	transferred by shear					583.01 ft-k	transferred by shear					5	83.01 ft-k transferred by sh	iear					594.74 ft-k	transferred by shear					609.52 ft-k transferred by shear						555.09 ft-k	transferred by s	hear			

Appendix D: Combined Shear & Moment Transfer (Slab-Column Connection Shear Check)

D.1 Hand Calculation

combined shear Caitlin Behm AE Senior Thesis & Moment Transfer combined shear & moment transfer in two-way slabs V = Vv (Mu-Mu)c =) shear due to unbalanced moment Ja $V = V_0 \Rightarrow$ shear stresses due to V_0 b.d Traditional ACI commentary Design Mernod $\mathcal{V}_{\upsilon} = \frac{V_{\upsilon}}{b_{z} d} \pm \frac{\mathcal{V}_{v} (M_{\upsilon_{z}} - M_{\upsilon_{z}})c}{\Box c}$ b. → length of crincal shear perimeter d - effective slab depm Je - effective polar moment of inertia for critical shear section Vo → factored shear being transferred from slab to column c + measurement from the centroid of the critical shear perimeter to me edge of the perimeter where the stress, Vu, is being calculated. 8, -> 1-8F $\chi_f \rightarrow 1/[1+2/3\sqrt{b_1/b_2}]$ Mu + factored moment being transferred at the connection. $\Im_{c} = 2 \left[\frac{b_{1}d^{3}}{12} + \frac{db_{1}^{3}}{12} \right] + 2 (b_{2}d) \left[\frac{1}{2} \right]$ b. = c. + 2 (d/2) (1 to axis of bending) Int. columns $b_2 = c_2 + z (d/2)$ (11 to axis of bending) c, = width of column + to axis of bending C2 = width of column II to axis of bending $J_{c} = 2 \left[\frac{b_{i} d^{3}}{12} + \frac{db_{i}^{3}}{12} + (b_{i} d) \left[\frac{b_{i}}{2} - C_{AB}^{2} \right] \right]$ edge columns CAB = 2 (b, d) (b, /2) 2(b,d)+(b2d) $V_{u} \leq \phi 4 \sqrt{f'_{c}}$ - concrete capacity see Excel spreadsheet for complete calculations 10P

D.2 Hospital 157mph

Hospital (N-S)													Hospital (E-W)								
Loval 6	b	Column BY	Column BZ	Column CA	Column CB	Column CC C	Column CD C	Column CE	Column CF C	olumn CG	Column CH	Column Cl	Loval 6	b	Column AQ	Column AR 0	Column AS	Column AT (Column AU	Column AV	Column AW
Levero	d	12	100	100	100	2 12	100	100	2 12	12	144		Levero	d				124	124	100	140
	c	32	17	17	17	7 17	17	17	7 17	17	32			c				22	17	17	26
	γv	0.41	0.52	0.52	0.52	0.52	0.52	0.52	2 0.52	0.52	0.41			γ.				0.47	0.47	0.52	0.46
	Mu	1102	1102	1102	1102	2 1102	1102	1102	2 1102	1102	1102			M_{u}				2885	2885	2885	2885
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			Vu				53.33	106.5	106.5	53.33
	J _c	77733.11243	324224	324224	324224	1 324224	324224	324224	324224	324224	77733.11243			Jc				72794	324224	324224	96862
	b ₁	32	34	34	34	1 34	34	34	1 34	34	32			b1				34	34	34	38
	D ₂	46	34	34	34	+ 34	34	34	+ 34	34	40			D ₂				34	34	34	38
	C1	34	22	22	22	22	22	22	2 22	22	34			C1				22	22	22	20
	C ₂		22	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		22	22		22				C2				22	22	~~~~	20
	Vu	0.221131009	0.085507872	0.085507872	0.085507872	0.085507872	0.085507872	0.085507872	0.085507872	0.085507872	0.221131009			Vu				0.454172192	0.143192812	0.134110463	0.391944326
Level 5	b _o	144	160	160	160	160	160	160	160	176	144		Level 5	bo				124	124	160	140
	a c	32	12	12	12	2 12	12	12	2 12 7 17	12	32			a c				12	12	12	26
	Υ _v	0.41	0.52	0.52	0.52	2 0.52	0.52	0.52	2 0.52	0.52	0.41			Υ _ν				0.47	0.47	0.52	0.46
	Mu	1875	1875	1875	1875	5 1875	1875	1875	5 1875	1875	1875			Mu				5227	5227	5227	5227
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			$V_{\rm u}$				53.33	106.5	106.5	53.33
	J _c	77733.11243	324224	324224	324224	324224	324224	324224	4 324224	324224	77733.11243			J _c				72794	324224	324224	96862
	b ₁	32	34	34	34	1 34	34	34	1 34	34	32			b1				34	34	34	38
	b ₂	46	34	34	34	1 34	34	34	1 34	34	46			b ₂				34	34	34	38
	c1	20	22	22	22	2 22	22	22	2 22	22	20			с ₁				22	22	22	26
	C2	34	22	22	22	2	22	22	2	22	34			C2				22	22	22	20
	Vu	0.354535188	0.106569369	0.106569369	0.106569369	0.106569369	0.106569369	0.106569369	0.106569369	0.101526756	0.354535188			Vu				0.793622231	0.201308094	0.197923234	0.684224041
Level 4	bo	144	176	176	176	5 176	176	176	5 176	176	144		Level 4	bo				140	140	176	156
	d	12	12	12	12	2 12	12	12	2 12	12	12			d				12	12	12	12
	с v	0.41	0.51	0.51	0.51	L 0.51	0.51	0.51	1 0.51	0.51	0.41			v				0.46	0.46	0.51	0.46
	Mu	2861	2861	2861	2861	L 2861	2861	2861	1 2861	2861	2861			Mu				8205	8205	8205	8205
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			Vu				53.33	106.5	106.5	53.33
	J _c	77733.11243	449920	449920	449920	449920	449920	449920	449920	449920	77733.11243			J _c				96862	449920	449920	125874
	b1	32	38	38	38	3 38	38	38	3 38	38	32			b1				38	38	38	42
	b ₂	46	38	38	38	3 38	38	38	3 38	38	46			b ₂				38	38	38	42
	c ₁	20	26	26	26	5 26	26	26	5 26	26	20			c ₁				26	26	26	30
	с ₂	34	26	26	26	26	26	26	5 26	26	34			c ₂				26	26	26	30
	V	0.524838839	0.111723085	0.111723085	0.111723085	5 0.111723085	0.111723085	0.111723085	5 0.111723085	0.111723085	0.524838839			V				1.055999753	0.224324306	0.226190176	0.916946697
	u													ů							
Level 3	b _o	144	176	176	176	5 176	176	176	5 176	176	144		Level 3	bo	124	160	160	176	176	176	156
	d	12	12	12	12	2 12	12	12	2 12	12	12			d	12	12	12	12	12	12	12
	C V	0.41	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.41			C V	0.49	0.52	0.52	0.51	0.51	0.51	0.46
	Mu	4041	4041	4041	4041	L 4041	4041	4041	1 4041	4041	4041			Mu	11800	11800	11800	11800	11800	11800	11800
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33
	J _c	77733.11243	449920	449920	449920	449920	449920	449920	449920	449920	77733.11243			Jc	75643.34948	324224	324224	449920	449920	449920	125874
	b ₁	32	38	38	38	3 38	38	38	3 38	38	32			b ₁	36	34	34	38	38	38	42
	b ₂	46	38	38	38	3 38	38	38	3 38	38	46			b ₂	32	34	34	38	38	38	42
	C ₁	20	26	26	26	5 26	26	26	5 26	26	20			c1	24	22	22	26	26	26	30
	C ₂	34	26	26	26	o 26	26	26	5 26	26	34			C ₂	20	22	22	26	26	26	30
	Vu	0.72852133	0.136997796	0.136997796	0.136997796	0.136997796	0.136997796	0.136997796	5 0.136997796	0.136997796	0.72852133			Vu	1.626361964	0.37705984	0.37705984	0.278015818	0.303191008	0.303191008	1.3061733
Level 2	b _o	156	192	192	192	2 192	192	192	2 192	192	144		Level 2	bo	140	176	160	192	192	176	172
	d	12	12	12	12	2 12	12	12	2 12	12	12			d	12	12	12	12	12	12	12
	v _v	0.46	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.41			V _v	0.46	0.51	0.52	0.50	0.50	0.51	0.45
	Mu	7827	7827	7827	7827	7 7827	7827	7827	7 7827	7827	7827			Mu	20652	20652	20652	20652	20652	20652	20652
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33
	J _c	125874	604800	604800	604800	604800	604800	604800	604800	604800	77733.11243			J _c	96862	449920	324224	604800	604800	449920	160310
	b ₁	42	42	42	42	2 42	42	42	2 42	42	32			b ₁	38	38	34	42	42	38	46
	b ₂	42	42	42	42	2 42	42	42	2 42	42	46			b ₂	38	38	34	42	42	38	46
	c ₁	30	30	30	30	30	30	30	30	30	20			c1	26	26	22	30	30	26	34
	c ₂	30	30	30	30	30	30	30	30	30	34			C ₂	26	26	22	30	30	26	34
	Vu	0.875976794	0.181339717	0.181339717	0.181339717	0.181339717	0.181339717	0.181339717	0.181339717	0.181339717	1.381983237			V _u	2.609831576	0.492830386	0.618336779	0.402755991	0.402755991	0.492830386	1.979945576
	-																				
Level 1	b _o	156	192	192	192	2 192	192	192	2 192	192	192	124	Level 1	bo	140	176	176	192	192	176	172
	d	12	12	12	12	2 12	12	12	2 12	12	12	12		d	12	12	12	12	12	12	12
	ν.,	0.46	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.47		ν.,	0.46	0.51	0.51	0.50	0.50	0.51	0.45
	M.,	13283	13283	13283	13283	3 13283	13283	13283	3 13283	13283	13283	13283		M	25600	25600	25600	25600	25600	25600	25600
	Vu	53.33	106.5	106.5	106.5	5 106.5	106.5	106.5	5 106.5	106.5	53.33			Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33
	J _c	125874	604800	604800	604800	604800	604800	604800	604800	604800	604800	72794		J _c	96862	449920	449920	604800	604800	791936	160310
	b ₁	42	42	42	42	2 42	42	42	2 42	42	42	34		b ₁	38	38	38	42	42	46	46
	b ₂	42	42	42	42	2 42	42	42	2 42	42	42	34		b ₂	38	38	38	42	42	46	46
	c1	30	30	30	30	30	30	30	30	30	30	22		c1	26	26	26	30	30	34	34
	C ₂		30	30	30	30	30	30	. 30	30	30	22		C ₂	26	26	26	30	30	34	34
	Vu	1.466782068	0.275532262	0.275532262	0.275532262	0.275532262	0.275532262	0.275532262	0.275532262	0.275532262	0.252455005	1.925732996		V _u	3.227415039	0.59880877	0.59880877	0.488163598	0.488163598	0.427566609	2.448053971
													1								

D.3 Clinic 157mph

Clinic (N-S)		C . L	6.1	6.1	6.1	Clinic (E-W)		6.1	6.1	6.1	0.1	C . L	6 . L DI	C.1	6 . L	C.1	
Level 6	b	Lolumn A	LOIUMN B	Lolumn C	Column D	Level 6	h	Lolumn BG	LOIUMN BH	LOIUMN BI	Lolumn BJ	LOIUMN BK	LOIUMN BL	LOIUMN BIVI	Column BN	Column BO	
Levero	d	124	2 100	2 12	2 124	Levero	d	132	100	100	170	100	100	133			
	c	24	1 17	/ 17	7 24		c	29	17	17	19	17	17	27			
	Ŷ٧	0.46	0.52	0.52	2 0.46		γv	0.42	0.52	0.52	0.51	0.52	0.52	0.48			
	M_{u}	3018	3 3018	3018	8 3018		$M_{\rm u}$	4356	4356	4356	4356	4356	4356	4356			
	V_{u}	53.33	3 106.5	106.5	5 53.33		V_{u}	53.33	106.5	106.5	106.5	106.5	106.5	53.33			
	٦c	67991.47405	324224	324224	4 67991.47405		J _c	65002.5	324224	324224	449920	324224	324224	128600.3294			
	b1	32	2 34	I 34	4 32		b1	30	34	34	38	34	34	45.5			
	b ₂	36	5 34	I 34	4 36		b ₂	42	34	34	38	34	34	38			
	c1	20	22	22	2 20		c1	18	22	22	26	22	22	33.5			
	c ₂	24	1 22	2 22	2 24		c ₂	30	22	22	26	22	22	26			
		0 518438330	0 127722012	0 10770001	0 519439336	1-		0.848172510	0 174170777	0 174170777	0 1 4 2 7 2 0 8 0	0 174170777	0 174170777	0.464033033			
	V _u	0.518428230	0.137732013	0.137732013	0.518428230	к	V _u	0.848172516	0.174179777	0.174179777	0.14373089	0.174179777	0.174179777	0.464022923			
Level 5	b.	124	160	160	124	Level 5	b.	132	160	160	176	160	160	155			
	d	12	2 12	2 12	2 12		d	12	12	12	12	12	12	12			
	с	24	17	1	7 24		с	29	17	17	19	17	17	27			
	γv	0.46	0.52	0.52	2 0.46		γv	0.42	0.52	0.52	0.51	0.52	0.52	0.48			
	M_{u}	5467	5467	5467	7 5467		M_{u}	5846	5846	5846	5846	5846	5846	5846			
	Vu	53.33	3 106.5	106.5	5 53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33			
	٦c	67991.47405	324224	324224	4 67991.47405		Jc	65002.5	324224	324224	449920	324224	324224	128600.3294			
	b1	32	2 34	34	4 32		b ₁	30	34	34	38	34	34	45.5			
	b ₂	36	5 34	34	4 36		b ₂	42	34	34	38	34	34	38			
	c ₁	20	22	22	2 20		C ₁	18	22	22	26	22	22	33.5			<u> </u>
	c ₂	24	. 22	22	2 24		C ₂	30	22	22	26	22	22	26			
	v	0.909881598	0.204460197	0.204460193	0.909881598	k	v	1.126783741	0.214786331	0.214786331	0.175646919	0.214786331	0.214786331	0.61294			
	• 0	21205001550			212 33001338		10				5.2. 50.0515			0.01204			-
Level 4	bo	144	176	5 176	5 144	Level 4	bo	132	176	176	176	176	176	155			
	d	12	2 12	12	2 12		d	12	12	12	12	12	12	12			
	с	32	2 19	19	9 32		с	29	19	19	19	19	19	27			
	Ŷ٧	0.41	0.51	0.51	1 0.41		Ŷ٧	0.42	0.51	0.51	0.51	0.51	0.51	0.48			
	Mu	8582	8582	8582	2 8582		Mu	9176	9176	9176	9176	9176	9176	9176			
	Vu	53.33	106.5	106.5	5 53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33			
	J _c	77733.11243	449920	449920	0 77733.11243		J _c	65002.5	449920	449920	449920	449920	449920	128600.3294			
	b1	32	2 38	38	8 32		b ₁	30	38	38	38	38	38	45.5			
	b ₂	46	38	38	8 46		b ₂	42	38	38	38	38	38	38			
	C1	20	26	20	5 20		C1	18	26	26	26	26	26	33.5			
	C ₂	34	20	20	5 34		C ₂	30	20	20	20	20	20	20			
	V	1.512324466	0.23425897	0.23425897	7 1.512324466	k	V	1.749659794	0.246999859	0.246999859	0.246999859	0.246999859	0.246999859	0.945865858			
	u						ŭ										
Level 3	b _o	144	176	5 176	5 144	Level 3	bo	132	176	176	192	176	176	155			
	d	12	2 12	2 12	2 12		d	12	12	12	12	12	12	12			
	с	32	2 19	9 19	9 32		с	29	19	19	19	19	19	27			
	γ.,	0.41	0.51	0.51	1 0.41		γ.,	0.42	0.51	0.51	0.50	0.51	0.51	0.48			
	Mu	12342	12342	12342	2 12342		Mu	13197	13197	13197	13197	13197	13197	13197			
	Vu	53.33	106.5	106.5	5 53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33			
	J _c	77733.11243	449920	449920	0 77733.11243		Jc	65002.5	449920	449920	449920	449920	449920	128600.3294			
	Ь ₁	32	2 38	38	8 32		b ₁	30	38	38	38	38	38	45.5			
	D ₂	46	38	36 36	5 46		D ₂	42	38	38	38	38	38	38			
	C ₁	20	20	20	5 20 5 24		C ₁	18	20	20	26	20	20	33.5			
	C ₂	34	20	20	5 34		C ₂	30	20	20	20	20	20	20			
	V	2.161417245	0.314804099	0.314804099	9 2.161417245	k	V.,	2.501510182	0.333127324	0.333127324	0.323311939	0.333127324	0.333127324	1.347728209			
	u																
Level 2	bo	144	192	192	2 144	Level 2	bo	132	192	192	192	192	192	167			
	d	12	2 12	2 12	2 12		d	12	12	12	12	12	12	12			
	с	32	2 21	2:	1 32		с	29	21	21	21	21	21	30			
	γ.	0.41	0.50	0.50	0.41		γ ₂	0.42	0.50	0.50	0.50	0.50	0.50	0.47			
	Mu	21600	21600	21600	21600		Mu	23097	23097	23097	23097	23097	23097	23097			
	V _u	53.33	106.5	106.5	53.33		V _u	53.33	106.5	106.5	106.5	106.5	106.5	53.33			
	J _c	/7733.11243	604800	604800	/7733.11243		J _c	65002.5	604800	604800	604800	604800	604800	154051.2688			
	b ₁	32	42	42	2 32		b1	30	42	42	42	42	42	47.5			
	b ₂	46	42	42	2 46		b ₂	42	42	42	42	42	42	42			
	c1	20	30	30	20		C1	18	30	30	30	30	30	35.5			
	c ₂	34	+ 30	30	34		C2	30	30	30	30	30	30	30			
	V	3.759693125	0.41911715	0.4191171	5 3.759693125	k	V	4.352808455	0.444961233	0.444961233	0.444961233	0.444961233	0.444961233	2.156481051			-
	- u						- 0										
Level 1	bo	144	192	192	2 144	Level 1	bo	132	192	192	192	192	192	203	160	124	
	d	12	2 12	2 12	2 12		d	12	12	12	12	12	12	12	12	12	-
	с	32	2 21	2:	1 32		с	29	21	21	21	21	21	23.75	17	22	
	Ŷv	0.41	0.50	0.50	0.41		γ.,	0.42	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0.47	l
	Mu	26773	26773	26773	3 26773		Mu	28629	28629	28629	28629	28629	28629	28629	28629	28629	I
	Vu	53.33	106.5	106.5	53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33	
	Jc	77733.11243	604800	604800	77733.11243		Jc	65002.5	604800	604800	604800	604800	604800	796598.75	324224	72794	
	b ₁	32	42	42	2 32		b ₁	30	42	42	42	42	42	47.5	34	34	
	0 ₂	46	, 42	42	∠ 46 D 20		0 ₂	42	42	42	42	42	42	42	34	34	
	C1	20	30	30	20		C1	18	30	30	30	30	30	35.5	22	22	
	C2	34	, <u> </u>	, 30	34		C2	30	30	30	30	30	30		22	22	-
	V	4.652771132	0.508427372	0.508427372	2 4.652771132	k	V	5.387269272	0.540461271	0.540461271	0.540461271	0.540461271	0.540461271	0.45480922	0.83573632	4.186449024	
	, u						Ŭ										

D.4 Hospital 110mph

Hospital (N-S)		Column BY	Column BZ	Column CA	Column CB	Column CC	Column CD	Column CE	Column CF	Column CG	Column CH	Column Cl	H	lospital (E-W)		Column AQ	Column AR	Column AS	Column AT	Column AU	Column AV	Column AW	
Level 6	b _o	144	160	160	160	160	160	160	160	160	144		Le	evel 6	bo				124	124	160	140	
	d	12	12	12	12	12	12	12	12	12	12				d				12	12	12	12	
	γ _v	0.41	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.41				γ _v				0.47	0.47	0.52	0.46	
	Mu	540	540	540	540	540	540	540	540	540	540				Mu				1414	1414	1414	1414	
	Vu	53.33	106.5	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33				Vu				53.33	106.5	5 106.5	53.33	
	J _c	77733.1124	324224	324224	324224	324224	324224	324224	324224	324224	77733.11243				J _c				72794	324224	1 324224 1 34	96862	
	b ₁	46	34	34	34	34	34	34	34	34	46				b ₁				34	34	34	38	
	c1	20	22	22	22	22	22	22	22	22	20				c1				22	22	2 22	26	
	c ₂	34	1 22	22	22	22	22	22	22	22	34				c2				22	22	2 22	26	
	Vu	0.124123755	0.070192625	0.070192625	0.070192625	0.070192625	0.070192625	0.070192625	0.070192625	0.070192625	0.124123755				Vu				0.240854434	0.10667191	0.094009136	0.20826942	
Level 5	þ.	144	160	160	160	160	160	160	160	176	144		Le	evel 5	b.				124	124	160	140	
	d	12	2 12	12	12	12	12	12	12	12	12				d				12	12	2 12	12	
	c	32	2 17	17	17	17	17	17	17	17	32				c				22	17	7 17	26	
	¥√ ا_M	919	919	919	919	919	919	919	919	919	919				M ₁₁				2562	2562	2 2562	2562	
	Vu	53.33	106.5	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33				Vu				53.33	106.5	106.5	53.33	
	J _c	77733.11243	324224	324224	324224	324224	324224	324224	324224	324224	77733.11243				J _c				72794	324224	324224	96862	
	b ₁	32	34	34	34	34	34	34	34	34	32				b ₁				34	34	1 34 1 34	38	
	C1	20	22	22	22	22	22	22	22	22	20				C ₁				22	22	2 22	26	
	C ₂	34	ı 22	22	22	22	22	22	22	22	34				c ₂				22	22	2 22	26	
	Vu	0.189532468	0.080519179	0.080519179	0.080519179	0.080519179	0.080519179	0.080519179	0.080519179	0.075476565	0.189532468				Vu				0.407317411	0.135171075	0.125302294	0.351600533	
Level 4	b	14/	176	176	176	176	176	176	176	176	144		16	avel 4	b				140	140	176	156	
Level +	d	144	2 12	176	176	176	176	176	176	176	144		Le		d				140	140	2 12	136	
	c	32	19	19	19	19	19	19	19	19	32				c				26	19	19	30	
	γ _v Μ.	140	1403	1403	1403	1403	1403	1403	1403	1403	1403				γ _v M.				4023	4023	3 4023	4023	
	Vu	53.33	106.5	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33				Vu				53.33	106.5	5 106.5	53.33	
	Jc	77733.11243	449920	449920	449920	449920	449920	449920	449920	449920	77733.11243				J _c				96862	449920	449920	125874	
	b ₁	32	2 38	38	38	38	38	38	38	38	32				b ₁				38	38	3 38	42	
	C1	20	26	26	26	26	26	26	26	26	20				D ₂				26	26	5 26	30	
	c2	34	26	26	26	26	26	26	26	26	34				c2				26	26	5 26	30	
	V	0.37305004	0 080480030	0.090490030	0.080480030	0 080480030	0.080480030	0.080480020	0.080480030	0.090490030	0 272050047				V				0 522012622	0 142202022	0 126500208	0 464070477	
	Vu	0.273035047	0.080480039	0.080480039	0.080480035	0.080480039	0.080480035	0.080480039	0.080480035	0.080480039	0.273039047				Vu				0.555515022	0.142293933	0.130355258	0.404079477	
Level 3	bo	144	176	176	176	176	176	176	176	176	144		Le	evel 3	bo	124	160	160	176	176	5 176	156	
	d	12	2 12 2 19	12	12 19	12	12	12	12	12	12				d c	12	12	12	12	12	2 12	12	
	γ۰	0.41	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.41				γv	0.49	0.52	0.52	0.51	0.51	0.51	0.46	
	Mu	1982	1982	1982	1982	1982	1982	1982	1982	1982	1982				Mu	5786	5786	5786	5786	5786	5 5786	5786	
	V _u	77733.11243	3 106.5 3 449920	106.5	106.5	449920	449920	106.5	106.5	106.5	53.33 77733.11243				V _u	53.33 75643.34948	324224	324224	106.5	449920	449920	53.33	
	b ₁	32	2 38	38	38	38	38	38	38	38	32				b ₁	36	34	34	38	38	3 38	42	
	b ₂	46	i 38	38	38	38	38	38	38	38	46				b ₂	32	34	34	38	38	3 38	42	
	c ₁	20	26	26	26	26	26	26	26	26	20				c1	24	22	22	26	26	26	30	
	C ₂	34	20	20	20	20	20	20	20	20	34				C ₂	20	22		20	20	20	30	
	Vu	0.372971987	0.092878113	0.092878113	0.092878113	0.092878113	0.092878113	0.092878113	0.092878113	0.092878113	0.372971987				Vu	0.815752739	0.213160995	0.213160995	0.149194244	0.174369433	0.174369433	0.655001327	
Level 2	b. d	156	192	192	192	192	192	192	192	192	144		Le	evel 2	b _o	140	176	160	192	192	176	172	
	c	30	21	21	21	21	. 21	21	21	21	32				c	26	12	12	21	21	L 12	34	
	٧٧	0.46	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.41				γ.	0.46	0.51	0.52	0.50	0.50	0.51	0.45	
	M _u	3838	3838	3838	3838	3838	3838	3838	3838	3838	3838				™ _u V.	10127	10127	10127	10127	10127	10127	10127	
	J _c	125874	604800	604800	604800	604800	604800	604800	604800	604800	77733.11243				J _c	96862	449920	324224	604800	604800	449920	160310	
	b ₁	42	42	42	42	42	42	42	42	42	32				b1	38	38	34	42	42	2 38	46	
	6 b2	42	42	42	42	42	42	42	42	42	46				b ₂	38	38	34	42	42	2 38	46	
	c ₁	30) 30 30	30	30	30	30	30	30	30	34				C1 C2	26 26	26	22	30	30	26	34	
	Vu	0.444055067	0.1124781	0.1124781	0.1124781	0.1124781	0.1124781	0.1124781	0.1124781	0.1124781	0.693385727				Vu	1.295934673	0.26736342	0.331476635	0.221052954	0.221052954	0.26736342	0.984053998	
Loval 1				102	102	103	100	100	100	103	102	434	4		h	140	470	470	103	400		470	
Level 1	b _o d	156	2 192	192	192	192	192	192	192	192	192	124	Le 2	EvelT	d	140	176	1/6	192	192	2 176	1/2	
	с	30	21	21	21	21	21	21	21	21	21	22	2		с	26	19	19	21	21	23	34	
	Y _∨	0.46	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.47	7		Y _V	0.46	0.51	0.51	0.50	0.50	0.51	0.45	
	V	53.33	3 106.5	106.5	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33	3		V.	53.33	12553	12553	12553	12553	5 106.5	53.33	
	Jc	125874	604800	604800	604800	604800	604800	604800	604800	604800	604800	72794	4		Jc	96862	449920	449920	604800	604800	791936	160310	
	b ₁	42	42	42	42	42	42	42	42	42	42	34	4		b ₁	38	38	38	42	42	2 46	46	<u> </u>
	b ₂	42	42	42	42	42	42	42	42	42	42	34	4		b ₂	38	38	38	42	42	2 46	46	-
	C ₁	30	30	30	30	30	30	30	30	30	30	22	2		с ₁ с ₂	26	26	26	30	30	34	34	
	V	0.733767839	0.158667233	0.158667233	0.158667233	0.158667233	0.158667233	0.158667233	0.158667233	0.158667233	0.158667233	0.980139585	5		V	1.598768461	0.319330219	0.319330219	0.262932814	0.262932814	0.235360171	1.213592266	

D.5 Clinic 110mph

Clinic (N-S)						Clinic (E-W)										
Laval C		Column A	Column B C	Column C	Column D	Level C	h-	Column BG	Column BH	Column Bl	Column BJ	Column BK	Column BL	Column BM	Column BN	Column BO
	d d	124	100	100	124	Leverb	d d	132	12	180	176	100	100	155		
	c	24	17	17	24		c	29	17	17	12	17	17	27		
	Ŷ٧	0.46	0.52	0.52	0.46		γv	0.42	0.52	0.52	0.51	0.52	0.52	0.48		
	Mu	1482	1482	3018	1482		$M_{\rm u}$	2139	2139	2139	2139	2139	2139	2139		
	V_{u}	53.33	106.5	106.5	53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33		
	J _c	67991.47405	324224	324224	67991.47405		J _c	65002.5	324224	324224	449920	324224	324224	128600.3294		
	b1	32	34	34	32		b1	30	34	34	38	34	34	45.5		
	b ₂	36	34	34	36		b ₂	42	34	34	38	34	34	38		
	c ₁	20	22	22	20		c1	18	22	22	26	22	22	33.5		
	C2	24	22	22	24		c ₂	30	22	22	26	22	22	26		
	v	0 272737289	0.095850882	0 137732013	0 272737289 k		v	0 433588348	0 11375567	0 11375567	0.096238618	0 11375567	0 11375567	0 242428613		
	•	0.272757205	0.055050002	0.137732013	0.272757205 K		• u	0.455500540	0.11575507	0.1157,5507	0.050250010	0.115/550/	0.11575507	0.2-12-120013		
Level 5	bo	124	160	160	124	Level 5	bo	132	160	160	176	160	160	155		
	d	12	12	12	12		d	12	12	12	12	12	12	12		
	с	24	17	17	24		с	29	17	17	19	17	17	27		
	γ.	0.46	0.52	0.52	0.46		γ.,	0.42	0.52	0.52	0.51	0.52	0.52	0.48		
	Mu	2685	2685	5467	2685		M _u	28/1	28/1	28/1	28/1	28/1	28/1	28/1		
	V _u	53.33	106.5	106.5	53.33		V _u	53.33	106.5	106.5	106.5	106.5	106.5	120000 2204		
	ے ل ا	67991.47405	324224	324224	67991.47405		J _с	65002.5	324224	324224	449920	324224	324224	128600.3294		
	b1	32	34	34	32		b ₁	30	34	34	30	34	34	45.5		
	C.	20	22	22	20		C.	18	22	22	26	22	22	33.5		
	C1	24	22	22	24		C1	30	22	22	26	22	22	26		
	-2						- 2				20		22			
	V_{u}	0.46513302	0.128647169	0.204460192	0.46513302 k		V_{u}	0.570561092	0.13371894	0.13371894	0.111929393	0.13371894	0.13371894	0.315640238		
Level 4	bo	144	176	176	144	Level 4	bo	132	176	176	176	176	176	155		
	d	12	12	12	12		d C	12	12	12	12	12	12	12		
	v.,	0.41	0.51	0.51	0.41		v.,	0.42	0.51	0.51	0.51	0.51	0.51	0.48		
	M	4217	4217	8582	4217		M.,	4509	4509	4509	4509	4509	4509	4509		
	Vu	53.33	106.5	106.5	53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33		
	J _c	77733.11243	449920	449920	77733.11243		1 _c	65002.5	449920	449920	449920	449920	449920	128600.3294		
	b1	32	38	38	32		b ₁	30	38	38	38	38	38	45.5		
	b ₂	46	38	38	46		b ₂	42	38	38	38	38	38	38		
	c ₁	20	26	26	20		c1	18	26	26	26	26	26	33.5		
	c2	34	26	26	34		c2	30	26	26	26	26	26	26		
		0.759790907	0 140753796	0 22425807	0.758780807.4			0.976933470	0 1 4 7 0 1 4 1 1 9	0 1 4 7 0 1 4 1 1 9	0 1 4701 4119	0 1 4 7 0 1 4 1 1 9	0 1 4 7 0 1 4 1 1 8	0 470242144		
	Vu	0.758789897	0.140753786	0.23425897	0.758789897 K		V _u	0.876833479	0.147014118	0.147014118	0.147014118	0.147014118	0.147014118	0.479342144		
Level 3	b	144	176	176	144	Level 3	b,	132	176	176	176	176	176	155		
	d	12	12	12	12		d	12	12	12	12	12	12	12		
	с	32	19	19	32		с	29	19	19	19	19	19	27		
	γ.	0.41	0.51	0.51	0.41		Ŷ٧	0.42	0.51	0.51	0.51	0.51	0.51	0.48		
	Mu	6065	6065	12342	6065		Mu	6485	6485	6485	6485	6485	6485	6485		
	V _u	53.33	106.5	106.5	53.33		V _u	53.33	106.5	106.5	106.5	106.5	106.5	53.33		
	J _c	77733.11243	449920	449920	77733.11243		Jc	65002.5	449920	449920	449920	449920	449920	128600.3294		
	D ₁	32	0C	0C 0C	32		b ₁	30	0C	38	30	30	00	45.5		
	D2	20	26	26	20		D ₂	42	26	26	26	26	26	33.5		
	C ₁	34	26	26	34		C1	30	26	26	26	26	26	26		
	-						-									
	V_{u}	1.077869636	0.180348001	0.314804099	1.077869636 k		V_{u}	1.2464266	0.189352486	0.189352486	0.189352486	0.189352486	0.189352486	0.676888841		
Level 2	bo	144	192	192	144	Level 2	bo	132	192	192	192	192	192	167		
	d	12	12	12	12		a c	12	12	12	12	12	12	12		
	Υ	0.41	0.50	0.50	0.41		Y _v	0.42	0.50	0.50	0.50	0.50	0.50	0.47		
	Mu	10616	10616	21600	10616		Mu	11352	11352	11352	11352	11352	11352	11352		
	V_{u}	53.33	106.5	106.5	53.33		Vu	53.33	106.5	106.5	106.5	106.5	106.5	53.33		
	J_{c}	77733.11243	604800	604800	77733.11243		J _c	65002.5	604800	604800	604800	604800	604800	154051.2688		
	b1	32	42	42	32		b1	30	42	42	42	42	42	47.5		
	b ₂	46	42	42	46		b ₂	42	42	42	42	42	42	42		
	c1	20	30	30	20		c1	18	30	30	30	30	30	35.5		
	c ₂	34	30	30	34		c ₂	30	30	30	30	30	30	30		
	V	1 96249491	0 220401170	0.41011715	1 96349491 4		v	2 156412197	0 242102969	0 242102868	0 242102969	0 242102868	0 242102969	1 072296649		
	Vu	1.80348481	0.229491179	0.41911/13	1.00340401 K		V u	2.130412187	0.242192808	0.242192808	0.242192808	0.242192808	0.242192808	1.073380048		
Level 1	bo	144	192	192	144	Level 1	b,	132	192	192	192	192	192	203	160	124
	d	12	12	12	12		d	12	12	12	12	12	12	12	12	12
	с	32	21	21	32		с	29	21	21	21	21	21	23.75	17	22
		0.44	0.50	0.50	0.41		Ŷv	0.42	0.50	0.50	0.50	0.50	0.50	0.51	0.52	0.47
	γv	0.41					Mu	14071	14071	14071	14071	14071	14071	14071	14071	14071
	γ _v M _u	13159	13159	26773	13159											
	γ _v M _u V _u	0.41 13159 53.33	13159 106.5	26773 106.5	13159 53.33		V _u	53.33	106.5	106.5	106.5	106.5	106.5	106.5	106.5	53.33
	γ_v M_u V_u J_c	0.41 13159 53.33 77733.11243	13159 106.5 604800	26773 106.5 604800	13159 53.33 77733.11243		V _u J _c	53.33 65002.5	106.5 604800	106.5 604800	106.5	106.5 604800	106.5 604800	106.5 796598.75	106.5 324224	53.33 72794
	Υ _ν Μ _u V _u J _c b ₁	0.41 13159 53.33 77733.11243 32	13159 106.5 604800 42	26773 106.5 604800 42	13159 53.33 77733.11243 32		V _u J _c b ₁	53.33 65002.5 30	106.5 604800 42	106.5 604800 42	106.5 604800 42	106.5 604800 42	106.5 604800 42	106.5 796598.75 47.5	106.5 324224 34	53.33 72794 34
	Υν Mu Vu Jc b1 b2	0.41 13159 53.33 77733.11243 32 46	13159 106.5 604800 42 42 30	26773 106.5 604800 42 42 42	13159 53.33 77733.11243 32 46 20		V _u J _c b ₁ b ₂	53.33 65002.5 30 42	106.5 604800 42 42	106.5 604800 42 42	106.5 604800 42 42	106.5 604800 42 42	106.5 604800 42 42	106.5 796598.75 47.5 42 35 5	106.5 324224 34 34 34	53.33 72794 34 34 22
	γ_v M_u V_u J_c b_1 b_2 c_1 c_2	0.41 13159 53.33 77733.11243 32 46 20 20 34	13159 106.5 604800 42 42 30 30	26773 106.5 604800 42 42 30 30	13159 53.33 77733.11243 32 46 20 34		V _u J _c b ₁ b ₂ c ₁ c ₂	53.33 65002.5 30 42 18 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 796598.75 47.5 42 35.5 30	106.5 324224 34 34 22 22 22	53.33 72794 34 34 22 22
	$\begin{array}{c c} & \gamma_{v} \\ & M_{u} \\ & \nabla_{u} \\ & J_{c} \\ & b_{1} \\ & b_{2} \\ & c_{1} \\ & c_{2} \end{array}$	0.41 13159 53.33 77733.11243 32 46 20 34	13159 106.5 604800 42 42 30 30 30	26773 106.5 604800 42 42 30 30	13159 53.33 77733.11243 32 46 20 34		V _u J _c b ₁ b ₂ c ₁ c ₂	53.33 65002.5 30 42 18 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 604800 42 42 30 30	106.5 796598.75 47.5 42 35.5 30	106.5 324224 34 34 22 22 22	53.33 72794 34 34 22 22

Appendix E: Column Interaction Diagrams

E.1 N-S Clinic Frame 10 Exterior Column Interaction Diagram

E.2 N-S Clinic Frame 10 Interior Column Interaction Diagram

Appendix F: Slab Capacity Check

F.1 Hand Calculation

Nemours Children's Hospital as a part of The Nemours Foundation

Nemours Children's Hospital as a part of The Nemours Foundation

Appendix G: Stud Rail Check

G.1 Hand Calculation

	Caitlin Behm	AE Senior Thesis	stud Rail Check	X					
0	Select the critical section for two-way shear around the column d=(12in - 0.75in - 1in)=10.25in d/2=5.125in → critical shear section cover=0.75in E30+(2x5.125)]=40.25in #8 = 1in → length of one side of the Critical shear section b_0 = 4 x 40.25 = 101" → shear perimeter								
	Compute the shear Maximum value $\phi V_n = \phi \otimes \sqrt{f'c}$ $\phi V_n = (0.75)(8)$ $\phi V_n = 700 K$ Shear in stab SDL =(12 psf)(DL = (145 pef) LL = (80 psf) Vo = (9492 pt) Shear from colo see Vo valu total shear fr	acting on the critical s of ϕ Vn allowed w) hear $\frac{b_{o}d}{\sqrt{5000}}$ (161)(10.25) 30') = 360plf (16')(10') = 4350plf (30') = 2400plf (30') = 2400plf f)(30')/2 = 143 k mn slab tranfer es firom shear & moment	ection ded-shear stud t manfer spreadsheet r < 700K						
	E.g. Clinic (N-S) 110mph col. 1 Story 6 177.2+0 = 177.2 Story 5 157.9+49=162.8 Story 4 158.6+4.2=162.8 Story 3 206.9+8.5=1215.4 Story 2 149.2+8.7=157.9 Story 1 216.7+14.7=1231.4	Col.2 x 22.1.2 + 6 = 227.2 K k 198.3 + 6.3 = 204.6 K K 198.6 + 12.4 = 211 K 189.2 + 13.2 = 202.4 K K 109.3 + 19.2 = 108.5 K K 319.3 + 16.7 = 339 K	col. 3 is similar to Col.2 Col. 4 is similar to Col.4 - requires shear studs blc greater man punching shear (212.12)						
25502									

Appendix H: Edge Beam Design

H.1 Hand Calculation

Nemours Children's Hospital as a part of The Nemours Foundation

Appendix I: Foundation Check

I.1 Hand Calculation

Appendix J: Daylighting Spreadsheet

J.1 Sun Angle Calculations – Summer Solstice Example

Solar Time, Solar Geometry, and Daylight Availability

	= User entered	values										
	= Computed values											
Chose Month	Enter Day of Month	Enter Local Clock Time	Choo	se Time .	e Time Zone		Check for Daylight Savings Time	Enter Latitude (degrees)	r Latitude egrees) Enter Longitude (degrees) (degrees) (degrees)		Choose Sky Condition	
June 🗨	21	12:00 PM	Eastern Standard	(GN	MT-5:00) 💌			28 .5°	81.4°	0.0°	Clear 🗸 🔻	
Solar Time (Decimal Format)	Solar Time (Clock Format)	Sunrise (Clock Format)	Sunset (Clock Format)		Solar Declination Angle (ð)		Solar Altitude Angle (a _t)	Solar Azimuth Angle (a _s)	Solar Elevation Azimuth (a _z)	Incident Angle (a _i)	Profile Angle (a _p)	
10.55	10:33 AM	6:32 AM	8:21 PM		23.4°		69.9°	- 80 .5°	- 80 .5°	86.7°	86.5°	
Direct Horizontal Solar Illum inance (E _{dh})	Direct Horizontal Iluminance from an Unobstructed Sky (E _{kh})	Total Horizontal Illuminance (E _{total})	Direct Vertical Solar Illuminance (E _{dv})									
8,977	1,470	10,447	546	= fc								
51,524	15,818	67,342	5,877	= Ix								

J.2 Sun Angle Calculations – Summer Solstice Complete 24 Hours Study

= User entered values		
= Computed values		
Solar Solar Elevation		
Chart Titles ==> Altitude Azimuth Azimuth Azimuth Incident Profile Sun Sun	Sky Total	
and a contract of the contract		
Clock Time Clock Solar Solar Solar Solar Solar Solar Solar Incident Profile Normal Horizontal Vertice	al Horizontal Total	
(AM/PM inne inne inne Antique Azimuta Levalori Angle Angle Solar Solar Solar Solar	Sky Illuminance	
Format) (degrees) (degrees) (lluminance Illuminance Il	Illuminance (Ix) (Ix)	
12:20 AM 0.00 -1.4534.0° -24.2° -24.2° 40.8° No Sun 0 0 0	0 0	
12.00 AW 0.00 -0.90	0 0	
1:30 AM 1.50 0.05 12:03 AM -38.0° 0.9° 0.9° 38.0° No Sun 0 0 0	0 0	
2:00 AM 2.00 0.55 12:33 AM -37.4° 9.6° 9.6° 38.5° No Sun 0 0 0	0 0	
2:30 AM 2.50 1.05 1:03 AM -35.9° 17.9° 17.9° 39.5° No Sun 0 0 0	0 0	
3:00 AM 3:00 1.55 1:33 AM -33.4° 25.7° 25.7° 41.2° No Sun 0 0 0	0 0	
3:30 AM 3.50 2.05 2:03 AM -30.2° 32.9° 32.9° 43.5° No Sun 0 0 0	0 0	
4:00 AM 4.00 2.55 2:33 AM -26.3° 39.3° 39.3° 46.1° No Sun 0 0 0	0 0	
4:30 AM 4.50 3.05 3:03 AM -21.9° 45.1° 45.1° 49.1° No Sun 0 0 0 0	0 0	
5-30 AM 5-50 4.05 4.03 AM -11.8° 54.0° 54.0° 55.7° No Sun 0 0 0	0 0	
6:00 AM 6:00 4:55 4:33 AM 6:02 59.0° 59.0° 59.2° No Sun 0 0 0	0 0	
6:30 AM 6.50 5.05 5:03 AM -0.5° 62.8° 62.8° 62.8° No Sun 0 0 0	0 0	
7:00 AM 7.00 5.55 5:33 AM 5.5° 66.2° 66.4° 13.4° 14,257 1,361 5,717	5,589 6,950	
7:30 AM 7.50 6.05 6:03 AM 11.6° 69.5° 69.5° 69.9° 30.3° 45,209 9,076 15,54	2 7,745 16,821	
8:00 AM 8.00 6.55 6:33 AM 17.8° 72.5° 72.5° 73.3° 46.9° 64,767 19,811 18,56	9,373 29,184	
8:30 AM 8.50 7.05 7:03 AM 24.1° 75.4° 75.4° 76.7° 60.6° 77,008 31,498 17,76	2 10,713 42,211	
9:00 AM 9.00 7.55 7:33 AM 30.6° 78.2° 78.2° 79.8° 70.8° 85,138 43,286 15,04	11,852 55,138	
9.30 ANV 9.50 8.05 8.03 ANV 37.0° 80.9° 80.9° 82.8° 78.2° 90,803 54,696 11,400 10.00 AN 10.00 8 EE 9.23 ANV 12.8° 93 9° 92 9° 95 E° 92 6° 04 99 56 77 445	12,630 67,526	
10.00 AM 10.50 0.55 AM 45.0 05.6 05.5 05.7 04,002 05,57 7,445	14 380 89 511	
11:00 AM 11:00 9.55 9:33 AM 56.7° -89.9° -89.9° 89.9° 100.097 83.685 130	14.972 98.658	
11:30 AM 11.50 10.05 10:03 AM 63.3° -85.9° -85.9° 88.1° 87.9° 101.725 90.886 3.304	15,451 106,337	
12:00 PM 12.00 10.55 10:33 AM 69.9° -80.5° -80.5° 86.7° 86.5° 102,887 96,592 5,877	15,818 112,410	
12:30 PM 12.50 11.05 11:03 AM 76.3° -71.6° -71.6° 85.7° 85.6° 103,661 100,693 7,754	16,076 116,769	
1:00 PM 13.00 11.55 11:33 AM 82.1° -51.6° -51.6° 85.1° 85.1° 104,096 103,112 8,871	16,227 119,338	
1:30 PM 13.50 12.05 12:03 PM 84.9° 8.0° 8.0° 84.9° 84.9° 104,218 103,804 9.192	16,269 120,073	
2:00 PM 14.00 12:55 12:33 PM 81.0° 57.6° 57.6° 85.2° 85.2° 104.033 102,755 8,700	16,205 118,960	
2:30 PM 14:50 13:05 1:03 PM 75:0° 73:3° 75:3° 85:3° 85:3° 103;531 99;986 7,425	16,032 116,018	
3.30 PM 15.50 14.05 2.03 PM 62.0° 86.8° 86.8° 88.5° 88.3° 101.432 80.525 2.605	15 362 104 887	
4:00 PM 16:00 14:55 2:33 PM 55:4° -89:4° 89:7° 89:6° 99:695 82:034 585	14.860 96.894	
4:30 PM 16.50 15.05 3:03 PM 48.8° -86.2° -86.2° 87.5° 86.6° 97,336 73,222 4,303	14,244 87,466	
5:00 PM 17.00 15.55 3:33 PM 42.2° -83.2° -83.2° 85.0° 82.6° 94,146 63,271 8,264	13,507 76,778	
5:30 PM 17.50 16.05 4:03 PM 35.7° -80.4° -80.4° 82.2° 76.9° 89,791 52,402 12,19	65,043	
6:00 PM 18:00 16:55 4:33 PM 29.2° -77.6° 79.2° 69.0° 83,709 40,883 15,694	3 11,632 52,516	
6:30 PM 18:50 17.05 5:03 PM 22.8° -74.8° -74.8° 76.0° 58.1° 74.905 29,071 18,12	3 10,456 39,527	
7:00 PM 19:00 17:55 5:33 PM 16:5° -71:9° -71:9° 72:6° 43:6° 61,494 17:489 18:34	5 9,066 26,555 7 260 14 404	
7.50 FW 15.50 16.05 0.05 FW 10.5 40.6 60.6 09.2 20.7 39,530 /,134 14,15	5 016 5 572	
8:30 PM 20:50 19:05 7:03 PM -1.7° -62.0° -62.0° -62.1° No Sin 0 0 0	0 0	
9:00 PM 21:00 19:55 7:33 PM -7:4° -58.2° -58.2° 58.5° No Sun 0 0 0	0 0	
9:30 PM 21.50 20.05 8:03 PM -12.9° -54.0° -54.0° 55.0° No Sun 0 0 0	0 0	
10:00 PM 22:00 20.55 8:33 PM -18.0° -49.2° -49.2° 51.6° No Sun 0 0	0 0	
10:30 PM 22.50 21.05 9:03 PM -22.8° -44.0° -44.0° 48.4° No Sun 0 0 0	0 0	
11:00 PM 23.00 21.55 9:33 PM -27.1° -38.1° -38.1° 45.5° No Sun 0 0 0	0 0	
<u>11:30 PM 23:50</u> 22:05 10:03 PM -30.9° -31.5° -31.5° 43.0° No Sun 0 0 0	0 0	

J.3 Sun Angle Calculations – Winter Solstice Example

Solar Tim	e, Solar G	Seometry,	and Daylig	ght Av	ailability	/						
	= User entered	values										
Chose Month	Enter Day of Month	Enter Local Clock Time	Choose Time Zone				Check for Daylight Savings Time	Enter Latitude (degrees)	Enter Longitude (degrees)	Enter Building Elevation Azimuth (a _e) (degrees)	Choose Sky Condition	
December 🔽	21	12:00 PM	Eastern Standard	(Gl	MT-5:00)	4T-5:00) –		28.5° 81.4°		0.0*	Clear 🔻	
Solar Time (Decimal Format)	Solar Time (Clock Format)	Sun rise (Clock Format)	Sunset (Clock Format)		Solar Declination Angle (õ)		Solar Altitude Angle (a _t)	Solar Azimuth Angle (a _s)	Solar Elevation Azimuth (a _z)	Incident Angle (a _i)	Profile Angle (a _p)	
11.61	11:36 AM	7:18 AM	5:29 PM		-23.4°		37.7°	-6.9°	-6.9°	38.3°	37.9°	
Direct Horizontal Solar Illum inance (E _{dh})	Direct Horizontal Iluminance from an Unobstructed Sky (E _{kh})	Total Horizontal Illuminance (E _{total})	Direct Vertical Solar Illuminance (E _{dv})									
5,551	1,201	6,753	7,121	= fc								
22,781	12,927	35,708	76,617	= Ix								

J.4 Sun Angle Calculations – Winter Solstice Complete 24 Hours Study

Available Illuminance Calculations															
	= User en	tered values	S												
	= Comput	ed values													
					Solar	Solar	Elevation				_				
			Chart	Titles ==>	Altitude	Azimuth	Azimuth	Incident	Profile		Sun	Sun	Sky	Total	
	Cleak	Color	Color	Color			Color			Direct	Direct	Direct	Llorizontal	Total	
Clock Time	Time	Time	Time	Time	Altitude	Azimuth	Elevation	Incident	Profile	Normal	Horizontal	Vertical	Unobstructed	Horizontal	
(AM/PM	(Decimal	(Decimal	(Clock	Angle	Angle	Angle	Azimuth	Angle	Angle	Solar	Solar	Solar	Sky	Illuminance	
Format)	Format)	Format)	Format)	(radians)			(degrees)	(degrees)	(degrees)	(lx)	(lx)	(lx)	Illuminance (Ix)	(Ix)	
12:00 AM	0.00	-0.39			-82 7°	-47 7°	-47 7°	85.1°	No Sun	0	0	0	0	0	
12:30 AM	0.50	0.11	12:06 AM		-84.7°	16.0°	16.0°	84.9°	No Sun	0	0 0	0	0	0	
1:00 AM	1.00	0.61	12:36 AM		-80.4°	60.2°	60.2°	85.2°	No Sun	0	0	0	0	0	
1:30 AM	1.50	1.11	1:06 AM		-74.3°	75.0°	75.0°	86.0°	No Sun	0	0	0	0	0	
2:00 AM	2.00	1.61	1:36 AM		-67.8°	82.3°	82.3°	87.1°	No Sun	0	0	0	0	0	
2:30 AM	2.50	2.11	2:06 AM		-61.2°	87.2°	87.2°	88.7°	No Sun	0	0	0	0	0	
3:00 AM	3.00	2.01	2:36 AM		-54.7°	-89.1°	-89.1°	89.5	No Sun	0	0	0	0	0	
4.00 AM	4 00	3.61	3:36 AM		-40.1	-82.9°	-82.9°	84.7°	No Sun	0	0	0	0	0	
4:30 AM	4.50	4.11	4:06 AM		-35.0°	-80.1°	-80.1°	81.9°	No Sun	õ	ő	õ	õ	õ	
5:00 AM	5.00	4.61	4:36 AM		-28.5°	-77.3°	-77.3°	78.9°	No Sun	0	0	0	0	0	-
5:30 AM	5.50	5.11	5:06 AM		-22.1°	-74.5°	-74.5°	75.6°	No Sun	0	0	0	0	0	
6:00 AM	6.00	5.61	5:36 AM		-15.8°	-71.6°	-71.6°	72.3°	No Sun	0	0	0	0	0	
6:30 AM	6.50	6.11	6:06 AM		-9.6°	-68.5°	-68.5°	68.8°	No Sun	0	0	0	0	0	
7:00 AM	7.00	6.61	6:36 AM		-3.6°	-65.2°	-65.2°	65.3	No Sun	0	0	0	2 000	0	
7.30 AW	7.50 8.00	7.11	7:36 AM		2.3 8.0°	-01.0 -57.8°	-01.0 -57.8°	58.1°	4.0 14.8°	30 396	4 229	303 16.055	6,581	3,939	
8:30 AM	8.50	8.11	8:06 AM		13.4°	-53.5°	-53.5°	54.6°	21.9°	55,709	12,945	32,248	8.272	21,217	
9:00 AM	9.00	8.61	8:36 AM		18.6°	-48.7°	-48.7°	51.3°	27.0°	71,117	22,645	44,490	9,546	32,191	
9:30 AM	9.50	9.11	9:06 AM		23.3°	-43.4°	-43.4°	48.1°	30.7°	80,899	32,016	54,009	10,551	42,567	
10:00 AM	10.00	9.61	9:36 AM		27.6°	-37.4°	-37.4°	45.2°	33.3°	87,387	40,467	61,536	11,348	51,815	
10:30 AM	10.50	10.11	10:06 AM		31.3°	-30.7°	-30.7°	42.7°	35.3°	91,779	47,654	67,428	11,969	59,623	
11:00 AM	11.00	10.61	10:36 AM		34.3°	-23.4°	-23.4°	40.7°	36.6°	94,727	53,354	71,858	12,433	65,787	
12:00 PM	11.50	11.11	11:06 AM		30.5-	-15.4"	-15.4 ⁻	39.2*	37.5	96,595	57,413	74,908	12,750	70,163	
12:30 PM	12.00	12 11	12:06 PM		38.0°	-0.3 1.8°	-0.3 1.8°	38.1°	38.0°	97 804	60 255	76,999	12,966	73,221	
1:00 PM	13.00	12.61	12:36 PM		37.3°	10.5°	10.5°	38.6°	37.8°	97,267	58,971	76,059	12,869	71,840	
1:30 PM	13.50	13.11	1:06 PM		35.7°	18.8°	18.8°	39.7°	37.2°	95,923	55,909	73,787	12,633	68,543	
2:00 PM	14.00	13.61	1:36 PM		33.1°	26.5°	26.5°	41.5°	36.1°	93,632	51,143	70,162	12,255	63,399	
2:30 PM	14.50	14.11	2:06 PM		29.8°	33.6°	33.6°	43.7°	34.5°	90,133	44,794	65,129	11,727	56,521	
3:00 PM	15.00	14.61	2:36 PM		25.8°	40.0°	40.0°	46.4°	32.3°	84,960	37,042	58,576	11,035	48,076	
3:30 PM	16.00	15.11	3:06 PM		21.4	45.73	45.7	49.4°	29.2	65 502	28,151	30,209	9.047	38,307	
4:30 PM	16.00	16.11	4:06 PM		11.2°	55.3°	55.3°	56.1°	23.0 19.2°	46 549	9 024	25 971	7 624	16 648	
5:00 PM	17.00	16.61	4:36 PM		5.6°	59.4°	59.4°	59.6°	11.0°	16,139	1,582	8,165	5,653	7,234	
5:30 PM	17.50	17.11	5:06 PM		-0.2°	63.2°	63.2°	63.2°	No Sun	0	0	0	0	0	
6:00 PM	18.00	17.61	5:36 PM		-6.1°	66.6°	66.6°	66.8°	No Sun	0	0	0	0	0	
6:30 PM	18.50	18.11	6:06 PM		-12.2°	69.8°	69.8°	70.3°	No Sun	0	0	0	0	0	
7:00 PM	19.00	18.61	6:36 PM		-18.5°	72.8°	72.8°	73.7°	No Sun	0	0	0	0	0	
7:30 PM	19.50	19.11	7:06 PM		-24.8°	75.73	75.7	77.0	No Sun	0	0	0	0	0	
8:30 PM	20.00	20.11	8:06 PM		-37.7°	78.5 81.3°	78.5 81.3°	83.1°	No Sun	0	0	0	0	0	
9:00 PM	21.00	20.61	8:36 PM		-44.3°	84.1°	84.1°	85.8°	No Sun	0	0	0	0	0	
9:30 PM	21.50	21.11	9:06 PM		-50.8°	87.1°	87.1°	88.2°	No Sun	0	0	0	0	0	
10:00 PM	22.00	21.61	9:36 PM		-57.4°	-89.5°	-89.5°	89.7°	No Sun	0	0	0	0	0	
10:30 PM	22.50	22.11	10:06 PM		-64.0°	-85.3°	-85.3°	88.0°	No Sun	0	0	0	0	0	
11:00 PM	23.00	22.61	10:36 PM		-70.6°	-79.7°	-79.7°	86.6°	No Sun	0	0	0	0	0	
11:30 PM	23.50	23.11	11:06 PM		-76.9	-70.2	-70.2	85.6	No Sun	0	0	0	0	0	

Appendix K: Aluminum Mullion Design

K.1 Hand Calculation

	Caitlin Behm AE Senior Thesis Mullion Design	2/2
	Deflection controls	
0	$f_{max} = 9r_{F} \times q \times L^{4} / 100 \text{ EI} \qquad fallow = \frac{\text{span}}{100} \text{ or } 20 \text{ mm}$ = 0.521 × (1.31 KN/m)(4.57) ⁴ /100EI = $\frac{4570}{100}$ = 25.4 mm = 2.98 (KN·m ³)/EI (KN·m ²) 100	
	$f_{max} = \frac{2.98 \times 10^{12} (N \cdot mm^2)}{(70,000 \text{Nmm}^2) C \text{Viz} (101.6)^3 - \text{Viz} (101.6 - 2(8))(101.6 - 2(8))^5]}{9.66 \text{mm} < 20 \text{mm}}$	
	t = 8mm for aluminum mullion design	
a strang		
0		
- And		
in the second		
0		
35502		